Skip to main content
Log in

Sorption study of uranium from aqueous solution on ordered mesoporous carbon CMK-3

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The ability of ordered mesoporous carbon CMK-3 has been explored for the removal and recovery of uraium from aqueous solutions. The textural properties of CMK-3 were characterized using small-angle X-ray diffraction and N2 adsorption–desorption, and the BET specific surface area, pore volume and the pore size were 1143.7 m2/g, 1.10 cm3/g and 3.4 nm. The influences of different experimental parameters such as solution pH, initial concentration, contact time, ionic strength and temperature on adsorption were investigated. The CMK-3 showed the highest uranium sorption capacity at initial pH of 6.0 and contact time of 35 min. Adsorption kinetics was better described by the pseudo-second-order model and adsorption process could be well defined by the Langmuir and Freundlich isotherm. The thermodynamic parameters, ∆(298 K), ∆ and ∆ were determined to be −7.7, 21.5 k J mol−1 and 98.2 J mol−1 K−1, respectively, which demonstrated the sorption process of CMK-3 towards U(VI) was feasible, spontaneous and endothermic in nature. The adsorbed CMK-3 could be effectively regenerated by 0.05 mol/L HCl solution for the removal and recovery of U(VI). Complete removal (99.9 %) of U(VI) from 1.0 L industry wastewater containing 15.0 mg U(VI) ions was possible with 2.0 g CMK-3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Sakr K, Sayed MS, Hafez MB (2003) J Radioanal Nucl Chem 256:179–184

    Article  CAS  Google Scholar 

  2. Özdemir T, Usanmaz A (2009) Prog Nucl Energy 51:240–245

    Article  Google Scholar 

  3. Sato T (2008) Solvent Extr Res Dev Jpn 15:61–69

    CAS  Google Scholar 

  4. Bayyari MA, Nazal MK, Khalili FA (2010) J Saudi Chem Soc 14(3):311–315

    Article  CAS  Google Scholar 

  5. ElSweify FH, Shehata MKK, ElShazly EAA (1995) J Radioanal Nucl Chem 198(1):77–87

    Article  CAS  Google Scholar 

  6. Rao TP, Metilda P, Gladis JM (2006) Talanta 68:1047–1064

    Article  CAS  Google Scholar 

  7. Coleman SJ, Coronado PR, Maxwell RS, Reynold JG (2003) Environ Sci Technol 37:2286–2290

    Article  CAS  Google Scholar 

  8. Zhao YS, Liu CX, Feng M, Chen Z, Li SQ, Tian G, Wang L, Huang JB, Li SJ (2010) J Hazard Mater 176:119–124

    Article  CAS  Google Scholar 

  9. Schierz A, Zanker H (2009) Environ Pollut 157:1088–1094

    Article  CAS  Google Scholar 

  10. Shao DD, Jiang ZQ, Wang XK, Li JX, Meng YD (2009) J Phys Chem B 113:860–864

    Google Scholar 

  11. Xu Y, Zondlo JW, Finklea HO, Brennsteiner A (2000) Fuel Process Technol 68:189–208

    Article  CAS  Google Scholar 

  12. Lu AH, Schüth F (2006) Adv Mater 18:1793–1805

    Article  CAS  Google Scholar 

  13. Kruk M, Jaroniec M, Kim TW, Ryoo R (2003) Chem Mater 15:2815–2823

    Article  CAS  Google Scholar 

  14. Darmstadt H, Roy C, Kaliaguine S, Kim TW, Ryoo R (2003) Chem Mater 15:3300–3307

    Article  CAS  Google Scholar 

  15. Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Nature 412:169–172

    Article  CAS  Google Scholar 

  16. Lei ZB, Bai SY, Xiao Y, Dang LQ, An LZ, Zhang GN, Xu Q (2008) J Phys Chem C 112:722–731

    Article  CAS  Google Scholar 

  17. Peng X, Cao DP, Wang WC (2009) Langmuir 25:10863–10872

    Article  CAS  Google Scholar 

  18. Vinu A, Hartmann M (2005) Catal Today 102–103:189–196

    Article  Google Scholar 

  19. Guo Z, Zhu G, Gao B, Zhang DL, Tian G, Chen Y, Zhang WW, Qiu SL (2005) Carbon 43:2344–2351

    Article  CAS  Google Scholar 

  20. Haque E, Khan NA, Talapaneni SN, Vinu A, Jegal J, Jhung SH (2010) Bull Korean Chem Soc 31:1638–1642

    Article  CAS  Google Scholar 

  21. Vinu A, Hossian KZ, Srinivasu P, Miyahara M, Anandan S, Gokulakrishnan N, Mori T, Ariga K, Balasubramanian VV (2007) J Mater Chem 17:1819–1825

    Article  CAS  Google Scholar 

  22. Baniamerian MJ, Moradi SE, Noori A, Salahi H (2009) Appl Surf Sci 256:1347–1354

    Article  CAS  Google Scholar 

  23. Wu ZX, Webley PA, Zhao DY (2010) Langmuir 26:10277–10286

    Article  CAS  Google Scholar 

  24. Lee JS, Joo SH, Ryoo R (2002) J Am Chem Soc 124:1156–1157

    Article  CAS  Google Scholar 

  25. Vinu A, Hossain KZ, Kumar GS, Ariga K (2006) Carbon 44:530–536

    Article  CAS  Google Scholar 

  26. Pickett G (1945) J Am Chem Soc 30:1958–1962

    Article  Google Scholar 

  27. Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373–380

    Article  CAS  Google Scholar 

  28. Zhang F, Meng Y, Gu D, Yan Y, Yu C, Tu B, Zhao D (2005) J Am Chem Soc 127:13508–13509

    Article  CAS  Google Scholar 

  29. Bayramoglu G, Celik G, Arica MJ (2006) Hazard Mater 136:345–353

    Article  CAS  Google Scholar 

  30. Aytas S, Yurtlu M, Donat RJ (2009) Hazard Mater 172:667–674

    Article  CAS  Google Scholar 

  31. Hazer O, Kartal Ş (2010) Talanta 82:1974–1979

    Article  CAS  Google Scholar 

  32. Parab H, Joshi S, Shenoy N, Verma R, Lali A, Sudersanan M (2005) Bioresour Technol 96:1241–1248

    Article  CAS  Google Scholar 

  33. Ghaemi A, Torab-Mostaedi M, Ghannadi-Maragheh MJ (2011) Hazard Mater 190:916–921

    Article  CAS  Google Scholar 

  34. Psareva T, Zakutevskyy O, Chubar N, Strelko V, Shaposhnikova T, Carvalho J, Correia M (2005) Colloids Surf A 252:231–236

    Article  CAS  Google Scholar 

  35. Anirudhan TS, Rijith S, Tharun AR (2010) Colloids Surf A 368:13–22

    Article  CAS  Google Scholar 

  36. Anirudhan TS, Divya L, Suchithra PS (2009) J Environ Manag 90:549–560

    Article  CAS  Google Scholar 

  37. Donat RJ (2009) Chem Thermodyn 41:829–835

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is financially supported by the National Natural Science Foundation of China (Grant No. 21101024), Key Project of Chinese Ministry of Education (Grant No. 211086), Natural Science Foundation of Jiangxi Province (No. 2010GQH0015), Sci. & Tech. Project of Jiangxi Provincial department of education (No. GJJ11139), Open Project Foundation of the Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense (East China Institute of Technology) (2010RGET08), Open Project Foundation of the Engineering Research Center of Nano-Geomaterials of Ministry of Education (China University of Geosciences) (CUGNGM201205), and Open Project Foundation of the State Key Laboratory of Biogeology and Environmental Geology (China University of Geosciences) (BGEG201105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-bin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, Bw., Zhang, Zb., Cao, Xh. et al. Sorption study of uranium from aqueous solution on ordered mesoporous carbon CMK-3. J Radioanal Nucl Chem 295, 663–670 (2013). https://doi.org/10.1007/s10967-012-1820-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1820-0

Keywords

Navigation