Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 295, Issue 1, pp 663–670 | Cite as

Sorption study of uranium from aqueous solution on ordered mesoporous carbon CMK-3

  • Bin-wen Nie
  • Zhi-bin Zhang
  • Xiao-hong Cao
  • Yun-hai Liu
  • Ping Liang
Article

Abstract

The ability of ordered mesoporous carbon CMK-3 has been explored for the removal and recovery of uraium from aqueous solutions. The textural properties of CMK-3 were characterized using small-angle X-ray diffraction and N2 adsorption–desorption, and the BET specific surface area, pore volume and the pore size were 1143.7 m2/g, 1.10 cm3/g and 3.4 nm. The influences of different experimental parameters such as solution pH, initial concentration, contact time, ionic strength and temperature on adsorption were investigated. The CMK-3 showed the highest uranium sorption capacity at initial pH of 6.0 and contact time of 35 min. Adsorption kinetics was better described by the pseudo-second-order model and adsorption process could be well defined by the Langmuir and Freundlich isotherm. The thermodynamic parameters, ∆(298 K), ∆ and ∆ were determined to be −7.7, 21.5 k J mol−1 and 98.2 J mol−1 K−1, respectively, which demonstrated the sorption process of CMK-3 towards U(VI) was feasible, spontaneous and endothermic in nature. The adsorbed CMK-3 could be effectively regenerated by 0.05 mol/L HCl solution for the removal and recovery of U(VI). Complete removal (99.9 %) of U(VI) from 1.0 L industry wastewater containing 15.0 mg U(VI) ions was possible with 2.0 g CMK-3.

Keywords

Ordered mesoporous carbon CMK-3 Adsorption Uranium 

Notes

Acknowledgment

This work is financially supported by the National Natural Science Foundation of China (Grant No. 21101024), Key Project of Chinese Ministry of Education (Grant No. 211086), Natural Science Foundation of Jiangxi Province (No. 2010GQH0015), Sci. & Tech. Project of Jiangxi Provincial department of education (No. GJJ11139), Open Project Foundation of the Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense (East China Institute of Technology) (2010RGET08), Open Project Foundation of the Engineering Research Center of Nano-Geomaterials of Ministry of Education (China University of Geosciences) (CUGNGM201205), and Open Project Foundation of the State Key Laboratory of Biogeology and Environmental Geology (China University of Geosciences) (BGEG201105).

References

  1. 1.
    Sakr K, Sayed MS, Hafez MB (2003) J Radioanal Nucl Chem 256:179–184CrossRefGoogle Scholar
  2. 2.
    Özdemir T, Usanmaz A (2009) Prog Nucl Energy 51:240–245CrossRefGoogle Scholar
  3. 3.
    Sato T (2008) Solvent Extr Res Dev Jpn 15:61–69Google Scholar
  4. 4.
    Bayyari MA, Nazal MK, Khalili FA (2010) J Saudi Chem Soc 14(3):311–315CrossRefGoogle Scholar
  5. 5.
    ElSweify FH, Shehata MKK, ElShazly EAA (1995) J Radioanal Nucl Chem 198(1):77–87CrossRefGoogle Scholar
  6. 6.
    Rao TP, Metilda P, Gladis JM (2006) Talanta 68:1047–1064CrossRefGoogle Scholar
  7. 7.
    Coleman SJ, Coronado PR, Maxwell RS, Reynold JG (2003) Environ Sci Technol 37:2286–2290CrossRefGoogle Scholar
  8. 8.
    Zhao YS, Liu CX, Feng M, Chen Z, Li SQ, Tian G, Wang L, Huang JB, Li SJ (2010) J Hazard Mater 176:119–124CrossRefGoogle Scholar
  9. 9.
    Schierz A, Zanker H (2009) Environ Pollut 157:1088–1094CrossRefGoogle Scholar
  10. 10.
    Shao DD, Jiang ZQ, Wang XK, Li JX, Meng YD (2009) J Phys Chem B 113:860–864Google Scholar
  11. 11.
    Xu Y, Zondlo JW, Finklea HO, Brennsteiner A (2000) Fuel Process Technol 68:189–208CrossRefGoogle Scholar
  12. 12.
    Lu AH, Schüth F (2006) Adv Mater 18:1793–1805CrossRefGoogle Scholar
  13. 13.
    Kruk M, Jaroniec M, Kim TW, Ryoo R (2003) Chem Mater 15:2815–2823CrossRefGoogle Scholar
  14. 14.
    Darmstadt H, Roy C, Kaliaguine S, Kim TW, Ryoo R (2003) Chem Mater 15:3300–3307CrossRefGoogle Scholar
  15. 15.
    Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Nature 412:169–172CrossRefGoogle Scholar
  16. 16.
    Lei ZB, Bai SY, Xiao Y, Dang LQ, An LZ, Zhang GN, Xu Q (2008) J Phys Chem C 112:722–731CrossRefGoogle Scholar
  17. 17.
    Peng X, Cao DP, Wang WC (2009) Langmuir 25:10863–10872CrossRefGoogle Scholar
  18. 18.
    Vinu A, Hartmann M (2005) Catal Today 102–103:189–196CrossRefGoogle Scholar
  19. 19.
    Guo Z, Zhu G, Gao B, Zhang DL, Tian G, Chen Y, Zhang WW, Qiu SL (2005) Carbon 43:2344–2351CrossRefGoogle Scholar
  20. 20.
    Haque E, Khan NA, Talapaneni SN, Vinu A, Jegal J, Jhung SH (2010) Bull Korean Chem Soc 31:1638–1642CrossRefGoogle Scholar
  21. 21.
    Vinu A, Hossian KZ, Srinivasu P, Miyahara M, Anandan S, Gokulakrishnan N, Mori T, Ariga K, Balasubramanian VV (2007) J Mater Chem 17:1819–1825CrossRefGoogle Scholar
  22. 22.
    Baniamerian MJ, Moradi SE, Noori A, Salahi H (2009) Appl Surf Sci 256:1347–1354CrossRefGoogle Scholar
  23. 23.
    Wu ZX, Webley PA, Zhao DY (2010) Langmuir 26:10277–10286CrossRefGoogle Scholar
  24. 24.
    Lee JS, Joo SH, Ryoo R (2002) J Am Chem Soc 124:1156–1157CrossRefGoogle Scholar
  25. 25.
    Vinu A, Hossain KZ, Kumar GS, Ariga K (2006) Carbon 44:530–536CrossRefGoogle Scholar
  26. 26.
    Pickett G (1945) J Am Chem Soc 30:1958–1962CrossRefGoogle Scholar
  27. 27.
    Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373–380CrossRefGoogle Scholar
  28. 28.
    Zhang F, Meng Y, Gu D, Yan Y, Yu C, Tu B, Zhao D (2005) J Am Chem Soc 127:13508–13509CrossRefGoogle Scholar
  29. 29.
    Bayramoglu G, Celik G, Arica MJ (2006) Hazard Mater 136:345–353CrossRefGoogle Scholar
  30. 30.
    Aytas S, Yurtlu M, Donat RJ (2009) Hazard Mater 172:667–674CrossRefGoogle Scholar
  31. 31.
    Hazer O, Kartal Ş (2010) Talanta 82:1974–1979CrossRefGoogle Scholar
  32. 32.
    Parab H, Joshi S, Shenoy N, Verma R, Lali A, Sudersanan M (2005) Bioresour Technol 96:1241–1248CrossRefGoogle Scholar
  33. 33.
    Ghaemi A, Torab-Mostaedi M, Ghannadi-Maragheh MJ (2011) Hazard Mater 190:916–921CrossRefGoogle Scholar
  34. 34.
    Psareva T, Zakutevskyy O, Chubar N, Strelko V, Shaposhnikova T, Carvalho J, Correia M (2005) Colloids Surf A 252:231–236CrossRefGoogle Scholar
  35. 35.
    Anirudhan TS, Rijith S, Tharun AR (2010) Colloids Surf A 368:13–22CrossRefGoogle Scholar
  36. 36.
    Anirudhan TS, Divya L, Suchithra PS (2009) J Environ Manag 90:549–560CrossRefGoogle Scholar
  37. 37.
    Donat RJ (2009) Chem Thermodyn 41:829–835CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Bin-wen Nie
    • 1
    • 2
  • Zhi-bin Zhang
    • 1
    • 2
    • 3
    • 4
  • Xiao-hong Cao
    • 1
    • 2
  • Yun-hai Liu
    • 1
    • 2
  • Ping Liang
    • 1
    • 2
    • 4
  1. 1.State Key Laboratory Breeding Base of Nuclear Resources and Environment (East China Institute of Technology)Ministry of EducationNanchangPeople’s Republic of China
  2. 2.Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National DefenseEast China Institute of TechnologyFuzhouPeople’s Republic of China
  3. 3.Engineering Research Center of Nano-Geomaterials of Ministry of EducationChina University of GeosciencesWuhanPeople’s Republic of China
  4. 4.State Key Laboratory of Biogeology and Environmental GeologyChina University of GeosciencesWuhanPeople’s Republic of China

Personalised recommendations