Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 293, Issue 2, pp 443–453 | Cite as

ED-XRF spectrometry-based trace element composition of genetically engineered rhizoclones vis-à-vis natural roots of a multi-medicinal plant, butterfly pea (Clitoria ternatea L.)

  • S. S. Swain
  • D. K. Ray
  • P. K. Chand
Article

Abstract

The energy dispersive X-ray fluorescence set-up incorporating a molybdenum secondary exciter was used for quantitative determination of major and minor elements in genetically transformed root somaclones (rhizoclones) of butterfly pea (Clitoria ternatea L.) which had been established via explant co-cultivation with Agrobacterium rhizogenes. The multi-elemental composition of these transformed rhizoclones was compared with that of the naturally grown in vivo donor plant. Trace elements namely Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr and Pb in addition to two macro-elements K and Ca were identified and quantified in root tissues of both sources. The elemental content of transformed root cultures was found to be at par with that of the natural roots of in vivo grown plants of the same species. These findings are implicated on the context of utilization of such Agrobacterium-mediated genetically transformed root cultures as a viable alternative to natural roots, the former being a fast-proliferating renewable resource of medicinally useful minerals essential for designing of effective drugs, besides providing an ex situ means for plant conservation.

Keywords

Butterfly pea ED-XRF Transformed root cultures Trace elements 

Notes

Acknowledgments

Funding support by the State Government of Orissa, Science & Technology (Biotechnology) Department, Bhubaneswar, India through a Research project is gratefully acknowledged. We also thank Dr. T. R. Routray, Ion Beam Laboratory, Institute of Physics, Bhubaneswar, India for his help in ED-XRF analysis of samples.

References

  1. 1.
    Trejo-Tapia G, Balcazar-Aguilar JB, Martínez-Bonfil B, Salcedo-Morales G, Jaramillo-Flores M, Arenas-Ocampo L, Jiménez-Aparicio A (2008) Innov Food Sci Emerg Technol 9:32–36CrossRefGoogle Scholar
  2. 2.
    Baldi A, Dixit VK (2008) Bioresource Technol 99:4609–4614CrossRefGoogle Scholar
  3. 3.
    Murthy HN, Hahn EJ, Paek KY (2008) Chin J Biotech 24(5):711–716CrossRefGoogle Scholar
  4. 4.
    Han Y, Nishibe S, Noguchi Y, Jin Z (2001) Phytochemistry 58(4):577–580CrossRefGoogle Scholar
  5. 5.
    Xie JT, Mehendale SR, Wang A (2004) Pharmacol Res 49(2):113–117CrossRefGoogle Scholar
  6. 6.
    Namdeo AG (2007) Pharmacog Rev 1:69–79Google Scholar
  7. 7.
    Tolomen M (1990) Vitamins and minerals in health and nutrition. Ellis Horwood Limited, ChichesterGoogle Scholar
  8. 8.
    Chen KS, Tseng CL, Lin TH (1993) J Radioanal Nucl Chem 170(1):265–280CrossRefGoogle Scholar
  9. 9.
    Obiajunwa EI, Adeleke CA, Olanrewaju RO (2002) J Radioanal Nucl Chem 252(3):473–476CrossRefGoogle Scholar
  10. 10.
    Ekinci N, Ekinci R, Polat R, Budak G (2004) J Radioanal Nucl Chem 260(1):127–131CrossRefGoogle Scholar
  11. 11.
    Gala S (1984) Diabates and hypertension. Navneet Publication, IndiaGoogle Scholar
  12. 12.
    Kar A, Choudhury BK, Bandyopadhyay NG (1994) J Ethnopharmacol 64(2):179–184CrossRefGoogle Scholar
  13. 13.
    Rauscher AM, Fairweather-Tait SJ, Wilson PD, Girrick S, Greenwoos R (1997) J Trace Elem Med Biol 11(2):65–70CrossRefGoogle Scholar
  14. 14.
    Terres-Martos C, Navarro-Alarcon M, Martin-Lagos E, Serrana HL, Perez-Valer OP, Lopez-Martinez MC (1998) J Trace Elem Med Biol 12(1):44–49CrossRefGoogle Scholar
  15. 15.
    Kruse-Jarres JD, Rukgauer R (2000) J Trace Elem Med Biol 14(1):21–27CrossRefGoogle Scholar
  16. 16.
    Chausmer AB (1998) J Am Coll Nutr 17(2):109–115Google Scholar
  17. 17.
    Gurson CT, Saner G (1971) Am J Clin Nutr 24:1313–1339Google Scholar
  18. 18.
    Morris BW, Macneil S, Stanley K, Gray TA, Fraser R (1993) J Endocrin 139:339–345CrossRefGoogle Scholar
  19. 19.
    Schwarz K, Mertz W (1959) Biophysics 85:292–295Google Scholar
  20. 20.
    Anderson A, Cheng N, Bryden AN (1997) Diabetes 46(11):1786–1791CrossRefGoogle Scholar
  21. 21.
    Rajukar MS, Damame MM (1998) Appl Radiat Isot 49(7):773–776CrossRefGoogle Scholar
  22. 22.
    Ambe S, Sekido S, Ozaki T, Yamaguchi I (2002) Appl Radiat Isot 56(3):473–476CrossRefGoogle Scholar
  23. 23.
    Margui E, Queralt I, Hidalgo M (2009) Trends Anal Chem 28:362–372CrossRefGoogle Scholar
  24. 24.
    Ene A, Stihi C, Popescu IV, Gheboianu A, Bosneaga A, Bancuta I (2009) Ann Dunarea de Jos Univ. Galati, Fasc. II 32(2):51Google Scholar
  25. 25.
    Ene A, Bosneaga A, Georgescu L (2010) Rom J Phys 55(7–8):806–815Google Scholar
  26. 26.
    Cojocaru V, Pantelica A, Pincovschi E, Georgescu II (2006) J Radioanal Nucl Chem 268(1):71–78CrossRefGoogle Scholar
  27. 27.
    Yu KN, Yeung ZLL, Lee LYL, Stokes MJ, Kwok RCW (2002) Appl Radiat Isot 57:279–284CrossRefGoogle Scholar
  28. 28.
    Steven Shackley M (2010) X-ray fluorescence spectrometry (XRF) in geoarchaeology. Springer, New York, p 231Google Scholar
  29. 29.
    Grieken R, Markowicz A (2002) In: Grieken R, Markowicz A (eds) Practical spectroscopy. Marcel Dekker, New York, p 983Google Scholar
  30. 30.
    Queralt I, Ovejero M, Carvalho ML, Marques AF, Llabres JM (2005) X-ray Spect 34(3):213–217CrossRefGoogle Scholar
  31. 31.
    Choudhury RP, Garg AN (2007) Food Chem 104:1454–1463CrossRefGoogle Scholar
  32. 32.
    Tirosoglu E, Cevik U, Ertugral B, Apaydin G, Baltas H, Ertugul M, Quanti J (2005) Spectro Radiat Trans 94:181–187CrossRefGoogle Scholar
  33. 33.
    Dogan O, Tirasoglu E (2006) J Quant Spectrosc Radiat Trans 101:141–145CrossRefGoogle Scholar
  34. 34.
    Behera PR, Nayak P, Barik DP, Rautray TR, Thirunavoukkarasu M, Chand PK (2010) Appl Radiat Isot 68:2229–2236CrossRefGoogle Scholar
  35. 35.
    Nayak P, Behera PR, Thirunavoukkarasu M, Chand PK (2011) Appl Radiat Isot 69:567–573CrossRefGoogle Scholar
  36. 36.
    Mukherjee PK, Kumar V, Kumar NS, Heinrich M (2008) J Ethnopharmacol 120:291–301CrossRefGoogle Scholar
  37. 37.
    Banerjee SK, Chakravarti RN (1963) Bull Calcutta School Trop Med 11:106–107Google Scholar
  38. 38.
    Banerjee SK, Chakravarti RN (1964) Bull Calcutta School Trop Med 12:23Google Scholar
  39. 39.
    Yadava RN, Verma V (2003) Asian J Chem 15:842–846Google Scholar
  40. 40.
    Parimaldevi B, Bhoominathan R, Mandal SC (2003) Fitoterapia 74:345–349CrossRefGoogle Scholar
  41. 41.
    Veena V, Taylor CG (2007) In vitro Cell Dev Biol Plant 43:383–403CrossRefGoogle Scholar
  42. 42.
    Swain SS (2011) PhD Thesis, Utkal University, India, 126Google Scholar
  43. 43.
    Murashige T, Skoog F (1962) Physiol Plant 15:473–497CrossRefGoogle Scholar
  44. 44.
    Sangwan RS, Sangawan NS (1999) Plant Mol Biol 16:935–944Google Scholar
  45. 45.
    Slightom JL, Durandtardif M, Jouanin L, Tepfer D (1986) J Biol Chem 261:108–121Google Scholar
  46. 46.
    Soudek P, Podliena R, Marsik P, Vanek T (2005) Biol Planta 49(4):487–492CrossRefGoogle Scholar
  47. 47.
    Ray DK, Nayak PK, Rautray TR, Vijayan V, Jena S (2004) Ind J Phys 78B(1):103–105Google Scholar
  48. 48.
    Vekemans B, Janssens K, Vincze L, Adams F, Espen PV (1995) Spectrochemica Acta 50B(2):149–169Google Scholar
  49. 49.
    Mohapatra A, Rautray TR, Vijayan V, Mohanty RK, Dey SK (2007) Aquacult 270:552–558CrossRefGoogle Scholar
  50. 50.
    Szaloki I, Somogyi A, Braun M, Toth A (1999) X-Ray Spect 28:399–405CrossRefGoogle Scholar
  51. 51.
    Markowicz AA, Grieken REV (2002) In: Grieken REV, Markowicz AA (eds) Hand book of X-ray spectrometry, 2nd edn. Marcel Dekker, New York, pp 407–432Google Scholar
  52. 52.
    Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research, 2nd edn. Wiley, New YorkGoogle Scholar
  53. 53.
    Birch NJ, Padgham C (1994) In: Seiler HG, Sigel A, Sigel H (eds) Handbook on metals in clinical and analytical chemistry. Marcel Dekker, New York, p 531Google Scholar
  54. 54.
    Underwood EJ, Mertz W (1986) Trace elements in human and animal nutrition, vol 1. Academic Press, New York, p 255Google Scholar
  55. 55.
    Helderman JH, Elahi D, Anderson DK, Raizes GS, Tobin JD, Shocken D, Andres R (1983) Diabetes 32(2):106–111CrossRefGoogle Scholar
  56. 56.
    Mooradian AD, Morely JE (1987) Am J Clin Nutr 45:877–895Google Scholar
  57. 57.
    Hambidge KM (1974) Am J Clin Nutr 27:505–515Google Scholar
  58. 58.
    Rajukar NS, Pardeshi BM (1997) Appl Radiat Isot 48(8):1059–1062CrossRefGoogle Scholar
  59. 59.
    Baker D, Campbell RK (1992) Diabetes Educ 18(5):420–427CrossRefGoogle Scholar
  60. 60.
    Kinlaw WB, Levine AS, Morley JE, Silvis SE, Mcclain CJ (1983) Am J Med 75(2):273–277CrossRefGoogle Scholar
  61. 61.
    Kumar S, Rao KSJ (1974) Nutr Metab 17(4):231–235CrossRefGoogle Scholar
  62. 62.
    Ivey M, Elmen G (1989) In: Berardi RR, Kroon LA, McDermott JH, Newton GD, Oszko MA, Popovich NG, Remington TL, Rollins CJ, Shimp LA, Tietze KJ (eds) Handbook of nonprescription drugs: an interactive approach to self-care, 8th edn. American Pharmaceutical Association, Washington, p 215Google Scholar
  63. 63.
    World Health Organization, Quality control methods for medicinal plant materials (1998) WHO Offset Publication, WHO, GenevaGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  1. 1.Plant Cell & Tissue Culture Facility, Post-Graduate Department of BotanyUtkal UniversityBhubaneswarIndia
  2. 2.Department of ChemistryUtkal UniversityBhubaneswarIndia
  3. 3.Institute of PhysicsBhubaneswarIndia

Personalised recommendations