Skip to main content
Log in

Investigation of sequestration mechanisms of radionuclide 63Ni(II) on kaolinite in aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

To better understand the application of kaolinite as an adsorbent for the decontamination of Ni(II) from radionuclide contaminated aqueous systems, herein, the sorption behavior of radionuclide 63Ni(II) on kaolinite as a function of contacting time, pH, coexistent electrolyte ions, adsorbent concentration, fulvic acid and humic acid was investigated using batch technique. At low pH values, ion exchange and/or outer-sphere surface complexation was the main mechanism of Ni(II) sorption on kaolinite, whereas, the sorption of Ni(II) was dominated by inner-sphere surface complexation at high pH values. The presence of different electrolyte ions can enhance or inhibit the sorption of Ni(II) on kaolinite to some extent. The Langmuir and Freundlich models were used to simulate the sorption isotherms of Ni(II) at three different temperatures of 288, 313 and 338 K. The thermodynamic parameters (i.e., ΔS°, ΔH°, and ΔG°) calculated from the temperature-dependent sorption isotherms indicated that the sorption reaction of Ni(II) on kaolinite was endothermic and spontaneous. The findings in this present study demonstrates that the kaolinite can be used as a cost-effective adsorbent for the solidification and pre-concentration of Ni(II) from large volumes of aqueous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Till JE, Grogan HA (2008) Oxford University press, New York

  2. Guo ZQ, Xu DP, Zhao DL, Zhang SW, Xu JZ (2011) J Radioanal Nucl Chem 287:505–512

    Article  CAS  Google Scholar 

  3. Zhao DL, Zhang CC, Xu JZ, Niu ZW (2011) J Radioanal Nucl Chem 289:671–678

    Article  CAS  Google Scholar 

  4. Yang ST, Guo ZQ, Sheng GD, Wang XK (2012) Sci Total Environ 420:214–221

    Article  CAS  Google Scholar 

  5. Xu D, Chen CL, Wang XK (2006) J Radioanal Nucl Chem 267:362–3571

    Article  CAS  Google Scholar 

  6. Lopez H, Olguin MT, Bosch P, Bulbulian S (1995) J Radioanal Nucl Chem 200:19–23

    Article  CAS  Google Scholar 

  7. Sheng GD, Sheng J, Yang ST, Hu J, Wang XK (2011) J Radioanal Nucl Chem 289:129–135

    Article  CAS  Google Scholar 

  8. Parab H, Joshi S, Shenoy N, Lali A, Sarma US, Sudersanan M (2006) Process Biochem 41:609–615

    Article  CAS  Google Scholar 

  9. Ajmal M, Rao RAK, Ahmad R, Ahmad J (2000) J Hazard Mater 79:117–131

    Article  CAS  Google Scholar 

  10. Kadirvelu K, Senthilkumar P, Thamaraiselvi K, Subburam V (2002) Bioresour Technol 81:87–90

    Article  CAS  Google Scholar 

  11. Wang XK, Chen CL, Du JZ, Tan XL, Xu D, Yu SM (2005) Environ Sci Technol 39:7084–7088

    Article  CAS  Google Scholar 

  12. Hu J, Xu D, Chen L, Wang XK (2009) J Radioanal Nucl Chem 279:701–708

    Article  CAS  Google Scholar 

  13. Chen L, Yu SM, Zuo LM, Liu B, Huang LL (2011) J Radioanal Nucl Chem 289:511–520

    Article  CAS  Google Scholar 

  14. Ren XM, Wang SW, Yang ST, Li JX (2010) J Radioanal Nucl Chem 283:253–259

    Article  CAS  Google Scholar 

  15. Kalavathy MH, Karthikeyan T, Rajgopal S, Miranda LR (2005) J Colloid Interface Sci 292:354–362

    Article  CAS  Google Scholar 

  16. An HK, Park BY, Kim DS (2001) Water Res 35:3551–3556

    Article  CAS  Google Scholar 

  17. Hasar H (2003) J Hazard Mater 97:49–57

    Article  CAS  Google Scholar 

  18. Wang XK, Chen CL, Hu WP, Ding AP, Xu D, Zhou X (2005) Environ Sci Technol 39:2856–2860

    Article  CAS  Google Scholar 

  19. Chen CL, Wang XK, Nagatsu M (2009) Environ Sci Technol 43:2362–2367

    Article  CAS  Google Scholar 

  20. Sheng GD, Li JX, Shao DD, Hu J, Chen CL, Chen YX, Wang XK (2010) J Hazard Mater 178:333–340

    Article  CAS  Google Scholar 

  21. Yang ST, Li JX, Shao DD, Hu J, Wang XK (2009) J Hazard Mater 166:109–116

    Article  CAS  Google Scholar 

  22. Fan QH, Tan XL, LI JX, Wang XK, Wu WS, Montavon G (2009) Environ Sci Technol 43:5776–5782

    Article  CAS  Google Scholar 

  23. Shao DD, Fan QH, Li JX, Niu ZW, Wu WS, Chen YX, Wang XK (2009) Micropor Mesopor Mater 123:1–9

    Article  CAS  Google Scholar 

  24. Shao DD, Wang XK, Fan QH (2009) Micropor Mesopor Mater 117:243–248

    Article  CAS  Google Scholar 

  25. Tan XL, Wang XK, Geckeis H, Rabung TH (2008) Environ Sci Technol 42:6532–6537

    Article  CAS  Google Scholar 

  26. Tan XL, Fan QH, Wang XK, Grambow B (2009) Environ Sci Technol 43:3115–3121

    Article  CAS  Google Scholar 

  27. Yang ST, Sheng GD, Tan XL, Hu J, Du JZ, Montavon G, Wang XK (2011) Geochim Cosmochim Acta 75:6520–6534

    Article  CAS  Google Scholar 

  28. Rožić M, Miljanić S (2011) J Hazard Mater 185:423–429

    Article  Google Scholar 

  29. Yang ST, Sheng GD, Guo ZQ, Tan XL, Xu JZ, Wang XK (2012) Sci China Chem 55:632–642

    Article  CAS  Google Scholar 

  30. Pradhan S, Shukla SS, Dorris KL (2005) J Hazard Mater 125:201–204

    Article  CAS  Google Scholar 

  31. Sheng GD, Yang ST, Sheng J, Hu J, Tan XL, Wang XK (2011) Environ Sci Technol 45:7718–7726

    Article  CAS  Google Scholar 

  32. Sheng GD, Wang SW, Hu J, Lu Y, Li JX, Dong YH, Wang XK (2009) Colloids Surf A 339:159–166

    Article  CAS  Google Scholar 

  33. Bel’chinskaya LI, Kozlov KA, Bondarenko AV, Petukhova GA, Gubkina ML (2008) Russ J Appl Chem 81:965–969

    Article  Google Scholar 

  34. Kang MJ, Hahn PS (2004) Korean J Chem Eng 21:419–424

    Article  CAS  Google Scholar 

  35. Lazarenko EK, Mineralogii K (1971) Vysshaya Shkola, Moscow

  36. Bragg WL, Claringbool GF (1965) Cornell University, Ithaca

  37. Unuabonah EI, Adebowale KO, Ofomaja AE (2009) Water Air Soil Poll 200:133–145

    Article  CAS  Google Scholar 

  38. Dávila-Rangel JI, Solache-Ríos M (2006) J Radioanal Nucl Chem 270:465–471

    Article  Google Scholar 

  39. Guo ZQ, Li Y, Zhang SW, Niu HH, Chen ZS, Xu JZ (2011) J Hazard Mater 192:168–175

    Article  CAS  Google Scholar 

  40. Zhao GX, Li JX, Ren XM, Chen CL, Wang XK (2011) Environ Sci Technol 45:10454–10462

    Article  CAS  Google Scholar 

  41. Yang ST, Li JX, Lu Y, Chen YX, Wang XK (2009) Appl Radiat Isot 67:1600–1608

    Article  CAS  Google Scholar 

  42. Fan QH, Shao DD, Wu WS, Wang XK (2009) Chem Eng J 150:188–195

    Article  CAS  Google Scholar 

  43. Yang ST, Zhao DL, Zhang H, Lu SS, Chen L, Yu XJ (2010) J Hazard Mater 183:632–640

    Article  CAS  Google Scholar 

  44. Al-Qunaibit MH, Mekhemer WK, Zaghloul AA (2008) J Colloid Interface Sci 283:316–321

    Article  Google Scholar 

  45. Sheng GD, Li YM, Dong HP, Shao DD (2012) J Radioanal Nucl Chem. doi:10.1007/s10967-012-1735-9

  46. Chang PP, Wang XK, Yu SM, Wu WS (2007) Colloids Surf A 302:75–81

    Article  CAS  Google Scholar 

  47. Tan XL, Chen CL, Yu SM, Wang XK (2008) Appl Geochem 23:2767–2777

    Article  CAS  Google Scholar 

  48. Yang SB, Hu J, Chen CL, Shao DD, Wang XK (2011) Environ Sci Technol 45:3621–3627

    Article  CAS  Google Scholar 

  49. Marcussen H, Holm PE, Strobel BW, Hansen HCB (2009) Environ Sci Technol 43:1122–1127

    Article  CAS  Google Scholar 

  50. Kowal-Fouchard A, Drot R, Simoni E, Ehrhardt JJ (2004) Environ Sci Technol 38:1399–1407

    Article  CAS  Google Scholar 

  51. Fan QH, Shao DD, Hu J, Wu WS, Wang XK (2008) Surf Sci 602:778–785

    Article  CAS  Google Scholar 

  52. Esmadi F, Simm J (1995) Colloids Surf A 104:265–270

    Article  CAS  Google Scholar 

  53. Harter RD, Naidu R (2001) Soil Sci Soc Am J 65:597–612

    Article  CAS  Google Scholar 

  54. Ostergren JD, Brown GE, Parks GA, Persson P (2000) J Colloid Interface Sci 225:483–493

    Article  CAS  Google Scholar 

  55. Liu ZJ, Chen L, Dong YH, Zhang ZC (2011) J Radioanal Nucl Chem 289:851–859

    Article  CAS  Google Scholar 

  56. Zhang LP, Zhang H, Ge ZW, Yu XJ (2011) J Radioanal Nucl Chem 288:537–546

    Article  CAS  Google Scholar 

  57. Shukla A, Zhang YH, Dubey P, Margrave JL, Shukla SS (2002) J Hazard Mater B 95:137–152

    Article  CAS  Google Scholar 

  58. Yang K, Xing BS (2009) Environ Pollut 157:1095–1100

    Article  CAS  Google Scholar 

  59. Wu XL, Zhao DL, Yang ST (2011) Desalination 269:84–91

    Article  CAS  Google Scholar 

  60. Zhu WB, Liu ZJ, Chen L, Dong YH (2011) J Radioanal Nucl Chem 289:781–788

    Article  CAS  Google Scholar 

  61. Zhao GX, Jiang L, He YD, Li JX, Dong HL, Wang XK, Hu WP (2011) Adv Mater 23:3959–3963

    Article  CAS  Google Scholar 

  62. Li SH, Guo ZQ, Zhang CC, Zhang SW (2011) J Radioanal Nucl Chem 287:621–628

    Article  Google Scholar 

  63. Ayata S, Aydinci S, Merdivan M, Binzet G, Külcü N (2010) J Radioanal Nucl Chem 285:525–529

    Article  CAS  Google Scholar 

  64. Bulut E, Özacar M, Şengil IA (2008) Micropor Mesopor Mater 115:234–246

    Article  CAS  Google Scholar 

  65. Ren XM, Shao DD, Yang ST, Hu J, Sheng GD, Tan XL, Wang XK (2011) Chem Eng J 170:170–177

    Article  CAS  Google Scholar 

  66. Zhou YT, Nie HL, Branford-White C, He ZY, Zhu LM (2009) J Colloid Interface Sci 330:29–37

    Article  CAS  Google Scholar 

  67. Ajmal M, Rao RAK, Anwar S, Ahmad J, Ahmad R (2003) Bioresour Technol 86:147–149

    Article  CAS  Google Scholar 

  68. Sheng GD, Shao DD, Ren XM, Wang XQ, Li JX, Chen YX, Wang XK (2010) J Hazard Mater 178:505–516

    Article  CAS  Google Scholar 

  69. Tahir SS, Rauf N (2003) J Chem Thermodyn 35:2003–2009

    Article  CAS  Google Scholar 

  70. Gutha Y, Munagapati VB, Allaa SR, Abburia K (2011) Sep Sci Technol 46:2291–2297

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaohui He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zong, P., Pan, H., Wang, H. et al. Investigation of sequestration mechanisms of radionuclide 63Ni(II) on kaolinite in aqueous solutions. J Radioanal Nucl Chem 295, 405–413 (2013). https://doi.org/10.1007/s10967-012-1786-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1786-y

Keywords

Navigation