Journal of Radioanalytical and Nuclear Chemistry

, Volume 295, Issue 1, pp 405–413 | Cite as

Investigation of sequestration mechanisms of radionuclide 63Ni(II) on kaolinite in aqueous solutions

  • Pengfei Zong
  • Hui Pan
  • Hai Wang
  • Chaohui He


To better understand the application of kaolinite as an adsorbent for the decontamination of Ni(II) from radionuclide contaminated aqueous systems, herein, the sorption behavior of radionuclide 63Ni(II) on kaolinite as a function of contacting time, pH, coexistent electrolyte ions, adsorbent concentration, fulvic acid and humic acid was investigated using batch technique. At low pH values, ion exchange and/or outer-sphere surface complexation was the main mechanism of Ni(II) sorption on kaolinite, whereas, the sorption of Ni(II) was dominated by inner-sphere surface complexation at high pH values. The presence of different electrolyte ions can enhance or inhibit the sorption of Ni(II) on kaolinite to some extent. The Langmuir and Freundlich models were used to simulate the sorption isotherms of Ni(II) at three different temperatures of 288, 313 and 338 K. The thermodynamic parameters (i.e., ΔS°, ΔH°, and ΔG°) calculated from the temperature-dependent sorption isotherms indicated that the sorption reaction of Ni(II) on kaolinite was endothermic and spontaneous. The findings in this present study demonstrates that the kaolinite can be used as a cost-effective adsorbent for the solidification and pre-concentration of Ni(II) from large volumes of aqueous systems.


Kaolinite Radionuclide 63Ni(II) Thermodynamic data Sequestration mechanisms 


  1. 1.
    Till JE, Grogan HA (2008) Oxford University press, New YorkGoogle Scholar
  2. 2.
    Guo ZQ, Xu DP, Zhao DL, Zhang SW, Xu JZ (2011) J Radioanal Nucl Chem 287:505–512CrossRefGoogle Scholar
  3. 3.
    Zhao DL, Zhang CC, Xu JZ, Niu ZW (2011) J Radioanal Nucl Chem 289:671–678CrossRefGoogle Scholar
  4. 4.
    Yang ST, Guo ZQ, Sheng GD, Wang XK (2012) Sci Total Environ 420:214–221CrossRefGoogle Scholar
  5. 5.
    Xu D, Chen CL, Wang XK (2006) J Radioanal Nucl Chem 267:362–3571CrossRefGoogle Scholar
  6. 6.
    Lopez H, Olguin MT, Bosch P, Bulbulian S (1995) J Radioanal Nucl Chem 200:19–23CrossRefGoogle Scholar
  7. 7.
    Sheng GD, Sheng J, Yang ST, Hu J, Wang XK (2011) J Radioanal Nucl Chem 289:129–135CrossRefGoogle Scholar
  8. 8.
    Parab H, Joshi S, Shenoy N, Lali A, Sarma US, Sudersanan M (2006) Process Biochem 41:609–615CrossRefGoogle Scholar
  9. 9.
    Ajmal M, Rao RAK, Ahmad R, Ahmad J (2000) J Hazard Mater 79:117–131CrossRefGoogle Scholar
  10. 10.
    Kadirvelu K, Senthilkumar P, Thamaraiselvi K, Subburam V (2002) Bioresour Technol 81:87–90CrossRefGoogle Scholar
  11. 11.
    Wang XK, Chen CL, Du JZ, Tan XL, Xu D, Yu SM (2005) Environ Sci Technol 39:7084–7088CrossRefGoogle Scholar
  12. 12.
    Hu J, Xu D, Chen L, Wang XK (2009) J Radioanal Nucl Chem 279:701–708CrossRefGoogle Scholar
  13. 13.
    Chen L, Yu SM, Zuo LM, Liu B, Huang LL (2011) J Radioanal Nucl Chem 289:511–520CrossRefGoogle Scholar
  14. 14.
    Ren XM, Wang SW, Yang ST, Li JX (2010) J Radioanal Nucl Chem 283:253–259CrossRefGoogle Scholar
  15. 15.
    Kalavathy MH, Karthikeyan T, Rajgopal S, Miranda LR (2005) J Colloid Interface Sci 292:354–362CrossRefGoogle Scholar
  16. 16.
    An HK, Park BY, Kim DS (2001) Water Res 35:3551–3556CrossRefGoogle Scholar
  17. 17.
    Hasar H (2003) J Hazard Mater 97:49–57CrossRefGoogle Scholar
  18. 18.
    Wang XK, Chen CL, Hu WP, Ding AP, Xu D, Zhou X (2005) Environ Sci Technol 39:2856–2860CrossRefGoogle Scholar
  19. 19.
    Chen CL, Wang XK, Nagatsu M (2009) Environ Sci Technol 43:2362–2367CrossRefGoogle Scholar
  20. 20.
    Sheng GD, Li JX, Shao DD, Hu J, Chen CL, Chen YX, Wang XK (2010) J Hazard Mater 178:333–340CrossRefGoogle Scholar
  21. 21.
    Yang ST, Li JX, Shao DD, Hu J, Wang XK (2009) J Hazard Mater 166:109–116CrossRefGoogle Scholar
  22. 22.
    Fan QH, Tan XL, LI JX, Wang XK, Wu WS, Montavon G (2009) Environ Sci Technol 43:5776–5782CrossRefGoogle Scholar
  23. 23.
    Shao DD, Fan QH, Li JX, Niu ZW, Wu WS, Chen YX, Wang XK (2009) Micropor Mesopor Mater 123:1–9CrossRefGoogle Scholar
  24. 24.
    Shao DD, Wang XK, Fan QH (2009) Micropor Mesopor Mater 117:243–248CrossRefGoogle Scholar
  25. 25.
    Tan XL, Wang XK, Geckeis H, Rabung TH (2008) Environ Sci Technol 42:6532–6537CrossRefGoogle Scholar
  26. 26.
    Tan XL, Fan QH, Wang XK, Grambow B (2009) Environ Sci Technol 43:3115–3121CrossRefGoogle Scholar
  27. 27.
    Yang ST, Sheng GD, Tan XL, Hu J, Du JZ, Montavon G, Wang XK (2011) Geochim Cosmochim Acta 75:6520–6534CrossRefGoogle Scholar
  28. 28.
    Rožić M, Miljanić S (2011) J Hazard Mater 185:423–429CrossRefGoogle Scholar
  29. 29.
    Yang ST, Sheng GD, Guo ZQ, Tan XL, Xu JZ, Wang XK (2012) Sci China Chem 55:632–642CrossRefGoogle Scholar
  30. 30.
    Pradhan S, Shukla SS, Dorris KL (2005) J Hazard Mater 125:201–204CrossRefGoogle Scholar
  31. 31.
    Sheng GD, Yang ST, Sheng J, Hu J, Tan XL, Wang XK (2011) Environ Sci Technol 45:7718–7726CrossRefGoogle Scholar
  32. 32.
    Sheng GD, Wang SW, Hu J, Lu Y, Li JX, Dong YH, Wang XK (2009) Colloids Surf A 339:159–166CrossRefGoogle Scholar
  33. 33.
    Bel’chinskaya LI, Kozlov KA, Bondarenko AV, Petukhova GA, Gubkina ML (2008) Russ J Appl Chem 81:965–969CrossRefGoogle Scholar
  34. 34.
    Kang MJ, Hahn PS (2004) Korean J Chem Eng 21:419–424CrossRefGoogle Scholar
  35. 35.
    Lazarenko EK, Mineralogii K (1971) Vysshaya Shkola, MoscowGoogle Scholar
  36. 36.
    Bragg WL, Claringbool GF (1965) Cornell University, IthacaGoogle Scholar
  37. 37.
    Unuabonah EI, Adebowale KO, Ofomaja AE (2009) Water Air Soil Poll 200:133–145CrossRefGoogle Scholar
  38. 38.
    Dávila-Rangel JI, Solache-Ríos M (2006) J Radioanal Nucl Chem 270:465–471CrossRefGoogle Scholar
  39. 39.
    Guo ZQ, Li Y, Zhang SW, Niu HH, Chen ZS, Xu JZ (2011) J Hazard Mater 192:168–175CrossRefGoogle Scholar
  40. 40.
    Zhao GX, Li JX, Ren XM, Chen CL, Wang XK (2011) Environ Sci Technol 45:10454–10462CrossRefGoogle Scholar
  41. 41.
    Yang ST, Li JX, Lu Y, Chen YX, Wang XK (2009) Appl Radiat Isot 67:1600–1608CrossRefGoogle Scholar
  42. 42.
    Fan QH, Shao DD, Wu WS, Wang XK (2009) Chem Eng J 150:188–195CrossRefGoogle Scholar
  43. 43.
    Yang ST, Zhao DL, Zhang H, Lu SS, Chen L, Yu XJ (2010) J Hazard Mater 183:632–640CrossRefGoogle Scholar
  44. 44.
    Al-Qunaibit MH, Mekhemer WK, Zaghloul AA (2008) J Colloid Interface Sci 283:316–321CrossRefGoogle Scholar
  45. 45.
    Sheng GD, Li YM, Dong HP, Shao DD (2012) J Radioanal Nucl Chem. doi: 10.1007/s10967-012-1735-9
  46. 46.
    Chang PP, Wang XK, Yu SM, Wu WS (2007) Colloids Surf A 302:75–81CrossRefGoogle Scholar
  47. 47.
    Tan XL, Chen CL, Yu SM, Wang XK (2008) Appl Geochem 23:2767–2777CrossRefGoogle Scholar
  48. 48.
    Yang SB, Hu J, Chen CL, Shao DD, Wang XK (2011) Environ Sci Technol 45:3621–3627CrossRefGoogle Scholar
  49. 49.
    Marcussen H, Holm PE, Strobel BW, Hansen HCB (2009) Environ Sci Technol 43:1122–1127CrossRefGoogle Scholar
  50. 50.
    Kowal-Fouchard A, Drot R, Simoni E, Ehrhardt JJ (2004) Environ Sci Technol 38:1399–1407CrossRefGoogle Scholar
  51. 51.
    Fan QH, Shao DD, Hu J, Wu WS, Wang XK (2008) Surf Sci 602:778–785CrossRefGoogle Scholar
  52. 52.
    Esmadi F, Simm J (1995) Colloids Surf A 104:265–270CrossRefGoogle Scholar
  53. 53.
    Harter RD, Naidu R (2001) Soil Sci Soc Am J 65:597–612CrossRefGoogle Scholar
  54. 54.
    Ostergren JD, Brown GE, Parks GA, Persson P (2000) J Colloid Interface Sci 225:483–493CrossRefGoogle Scholar
  55. 55.
    Liu ZJ, Chen L, Dong YH, Zhang ZC (2011) J Radioanal Nucl Chem 289:851–859CrossRefGoogle Scholar
  56. 56.
    Zhang LP, Zhang H, Ge ZW, Yu XJ (2011) J Radioanal Nucl Chem 288:537–546CrossRefGoogle Scholar
  57. 57.
    Shukla A, Zhang YH, Dubey P, Margrave JL, Shukla SS (2002) J Hazard Mater B 95:137–152CrossRefGoogle Scholar
  58. 58.
    Yang K, Xing BS (2009) Environ Pollut 157:1095–1100CrossRefGoogle Scholar
  59. 59.
    Wu XL, Zhao DL, Yang ST (2011) Desalination 269:84–91CrossRefGoogle Scholar
  60. 60.
    Zhu WB, Liu ZJ, Chen L, Dong YH (2011) J Radioanal Nucl Chem 289:781–788CrossRefGoogle Scholar
  61. 61.
    Zhao GX, Jiang L, He YD, Li JX, Dong HL, Wang XK, Hu WP (2011) Adv Mater 23:3959–3963CrossRefGoogle Scholar
  62. 62.
    Li SH, Guo ZQ, Zhang CC, Zhang SW (2011) J Radioanal Nucl Chem 287:621–628CrossRefGoogle Scholar
  63. 63.
    Ayata S, Aydinci S, Merdivan M, Binzet G, Külcü N (2010) J Radioanal Nucl Chem 285:525–529CrossRefGoogle Scholar
  64. 64.
    Bulut E, Özacar M, Şengil IA (2008) Micropor Mesopor Mater 115:234–246CrossRefGoogle Scholar
  65. 65.
    Ren XM, Shao DD, Yang ST, Hu J, Sheng GD, Tan XL, Wang XK (2011) Chem Eng J 170:170–177CrossRefGoogle Scholar
  66. 66.
    Zhou YT, Nie HL, Branford-White C, He ZY, Zhu LM (2009) J Colloid Interface Sci 330:29–37CrossRefGoogle Scholar
  67. 67.
    Ajmal M, Rao RAK, Anwar S, Ahmad J, Ahmad R (2003) Bioresour Technol 86:147–149CrossRefGoogle Scholar
  68. 68.
    Sheng GD, Shao DD, Ren XM, Wang XQ, Li JX, Chen YX, Wang XK (2010) J Hazard Mater 178:505–516CrossRefGoogle Scholar
  69. 69.
    Tahir SS, Rauf N (2003) J Chem Thermodyn 35:2003–2009CrossRefGoogle Scholar
  70. 70.
    Gutha Y, Munagapati VB, Allaa SR, Abburia K (2011) Sep Sci Technol 46:2291–2297CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  1. 1.School of Nuclear Science and TechnologyXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations