Journal of Radioanalytical and Nuclear Chemistry

, Volume 294, Issue 3, pp 447–451 | Cite as

Measurement of naturally occurring radioactive materials (NORM) in beach sand minerals using HPGe based gamma-ray spectrometry

  • S. J. Sartandel
  • S. V. Bara
  • S. Chinnaesakki
  • R. M. Tripathi
  • V. D. Puranik


This paper discusses the measurement of naturally occurring radioactivity materials (NORM) in beach sand minerals using high resolution gamma spectrometry. In India, the beach sand minerals of economic interest from coastal Kerala, Tamil Nadu and Orissa are enriched with NORM due to the occurrence of monazite deposits and heavy minerals such as zircon, ilmenite, magnetite, garnet, rutile etc. Since many of these ores are rich in 232Th and other radio elements, certification of radioactivity levels has become mandatory in recent years. The average activity concentrations of 226Ra in zircon, rutile and garnet were 3,531, 1,134 and 17 Bq kg−1, respectively. The average activity concentration of 232Th observed in zircon, rutile and garnet were 618, 454 and 64 Bq kg−1, respectively. Concentration of 226Ra, 232Th, and 40K in ilmenite ore ranged from 17.6–444 Bq kg−1, 80.4–1971 Bq kg−1 and ≤5.5–25.0 Bq kg−1, respectively.


Beach sand minerals Synthetic rutile NORM Activity concentration Gamma-ray spectrometry 



The authors would like to thank Dr. A. K. Ghosh Director, HS and EG, BARC and Dr. D. N Sharma Associate Director, HS and EG, BARC for their encouragement and support.


  1. 1.
    Wymer DG (2007) Managing exposure to NORM—consensus or chaos. In: Proceedings of the 5th International Symposium on NORM, Sevilla, Spain, 19–22 March, 31–56Google Scholar
  2. 2.
    Pincock, Allen and Holt (2005) Mineral sand deposits. Pincock Perspectives, issue No. 66, May 2005Google Scholar
  3. 3.
    Babu N, Vasumathi N, Bhima Rao R (2009) Recovery of ilmenite and other heavy minerals from teri sands (red sands) of Tamil Nadu. India J Miner Mater Charact Eng 8(2):149–159Google Scholar
  4. 4.
    Mukherjee TK (2004) The role of IREL in the Indian Nuclear Energy Programme. An Int J Nucl Power 18:2–3Google Scholar
  5. 5.
    McNulty GS (2007). Production of titanium dioxide. In: Proceedings of the 5th International Symposium on NORM, Sevilla, Spain, 19–22 March, 169–188Google Scholar
  6. 6.
    Pillai PMB, Khan AH (2003) Radiological safety and environmental surveillance during the mining and milling of beach minerals and processing of monazite. Radiat Prot Environ 26(3–4):523–532Google Scholar
  7. 7.
    AQCS (1995) Intercomparison runs reference materials. Analytical quality control services. IAEA, ViennaGoogle Scholar
  8. 8.
    Saegusa J, Kawasaki K, Mihara A, Ito M, Yoshida M (2004) Determination of detection efficiency curves of HPGe detectors on radioactivity measurement of volume samples. Appl Radiat Isot 61:1383–1390CrossRefGoogle Scholar
  9. 9.
    Boshkova T, Minev L (2001) Corrections for self-attenuation in gamma-ray spectrometry of bulk samples. Appl Radiat Isot 54:777–783CrossRefGoogle Scholar
  10. 10.
    San Miguela EG, Perez-Morenoa JP, Bolivara JP, García-Tenori R (2004) A semi-empirical approach for determination of low-energy gamma-emitters in sediment samples with coaxial Ge-detectors. Appl Radiat Isot 61:361–366CrossRefGoogle Scholar
  11. 11.
    Berger MJ, Hubbell JH, Seltzer SM, Chang J, Coursey JS, Sukumar R, Zucker DS (2009) XCOM: Photon cross sections database. NIST Standard reference database 8 (XGAM), NBSIR 87–3597Google Scholar
  12. 12.
    ICRP (1983) Radionuclide general principles of monitoring for radiation protection of workers transformations. ICRP publication 35, Pergamon Press, OxfordGoogle Scholar
  13. 13.
    Groppi F, Lavi N, Alfassi ZB, Bonardi M, Birattari C (2005) High-resolution gamma-ray spectrometric measurement of K-40 in natural and synthetic materials. Radiat Prot Dosimetry 115(1–4):441–444. doi: 10.1093/rpd/nci210 CrossRefGoogle Scholar
  14. 14.
    Alam MN, Chowdhury MI, Kamal M, Ghose S, Islam MN, Mustafa MN, Miah MMH, Ansary MM (1999) The 226Ra, 232Th and 40K activities in beach sand minerals and beach soils of Cox’s Bazar. Bangladesh J Environ Radioact 46:243–250Google Scholar
  15. 15.
    Johnston G (1991) An evaluation of radiation and dust hazards at a mineral sand processing plant. Health Phys 60(6):781–787CrossRefGoogle Scholar
  16. 16.
    de Meijeri RJ, Paul LW, Schuiling RD, de Reus JH, Wiersma J (1988) Provenance of coastal sediments using natural radioactivity of heavy mineral sands. Radiat Prot Dosimetry 24:55–58Google Scholar
  17. 17.
    IAEA-RS-G-1.7 (2004) International Atomic Energy Agency, application of the concepts of exclusion, exemption and clearance, IAEA safety standards series No. RS-G-1.7, IAEA, ViennaGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • S. J. Sartandel
    • 1
  • S. V. Bara
    • 1
  • S. Chinnaesakki
    • 1
  • R. M. Tripathi
    • 1
  • V. D. Puranik
    • 1
  1. 1.Environmental Assessment DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations