Adsorption of uranium from aqueous solution using HDTMA+-pillared bentonite: isotherm, kinetic and thermodynamic aspects

  • You-Qun Wang
  • Zhi-bin Zhang
  • Qin Li
  • Yun-Hai Liu


The ability of hexadecyltrimethylammonium cation pillared bentonite (HDTMA+-bentonite) has been explored for the removal and recovery of uranium from aqueous solutions. The adsorbent was characterized using small-angle X-ray diffraction, high resolution transmission electron microscopy, and Fourier transform infrared spectroscopy. The influences of different experimental parameters such as solution pH, initial uranium concentration, contact time, dosage and temperature on adsorption were investigated. The HDTMA+-bentonite exhibited the highest uranium sorption capacity at initial pH of 6.0 and at 80 min. Adsorption kinetics was better described by the pseudo-second-order model and adsorption process could be well defined by the Langmuir isotherm. The thermodynamic parameters, △ (308 K), Δ, and Δ were determined to be −31.64, −83.84 kJ/mol, and −169.49 J/mol/K, respectively, which demonstrated the sorption process of HDTMA+-bentonite towards U(VI) was feasible, spontaneous, and exothermic in nature. The adsorption on HDTMA+-bentonite was more favor than Na-bentonite, in addition the saturated monolayer sorption capacity increased from 65.02 to 106.38 mg/g at 298 K after HDTMA+ pillaring. Complete removal (≈100%) of U(VI) from 1.0 L simulated nuclear industry wastewater containing 10.0 mg U(VI) ions was possible with 1.5 g HDTMA+-bentonite.


Hexadecyltrimethylammonium bromide Bentonite Adsorption Uranium 



This work was financially supported by the National Natural Science Foundation of China (Grant No. 21101024), Key Project of Chinese Ministry of Education (Grant No. 211086), Natural Science Foundation of Jiangxi Province (No. 2010GQH0015), Science and Technology project of Jiangxi Provincial Department of Education (No. GJJ11139) and Open Project Foundation of the Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense, East China Institute of Technology, China (2010RGET08).


  1. 1.
    Jackson BP, Ranville JF, Bertsch PM, Sowder AG (2005) Environ Sci Technol 39:2478–2485CrossRefGoogle Scholar
  2. 2.
    Donia AM, Atia AA, Moussa EMM, El-Sherif AM, El-Magied MOA (2009) Hydrometallurgy 95:183–189CrossRefGoogle Scholar
  3. 3.
    Smith SC, Douglas M, Moore DA, Kukkadapu RK, Arey BW (2009) Environ Sci Technol 43:2341–2347CrossRefGoogle Scholar
  4. 4.
    Xie S, Zhang C, Zhou X, Yang J, Zhang X, Wang J (2009) J Environ Radioact 100:162–166CrossRefGoogle Scholar
  5. 5.
    Djedidi Z, Bouda M, Souissi MA, Ben Cheikh R, Mercier G, Tyagi RD, Blais JF (2009) J Hazard Mater 172:1372–1382CrossRefGoogle Scholar
  6. 6.
    Abdel-Khalek AA, Ali MM, Ashour RM, Abdel-Magied AF (2011) J Radioanal Nucl Chem 290:353–359CrossRefGoogle Scholar
  7. 7.
    Kumari N, Prabhu DR, Pathak PN, Kanekar AS, Manchanda VK (2011) J Radioanal Nucl Chem 289:835–843CrossRefGoogle Scholar
  8. 8.
    Cojocaru C, Zakrzewska-Trznadel G, Jaworska A (2009) J Hazard Mater 169:599–609CrossRefGoogle Scholar
  9. 9.
    Cojocaru C, Zakrzewska-Trznadel G, Miskiewicz A (2009) J Hazard Mater 169:610–620CrossRefGoogle Scholar
  10. 10.
    Li X, Song Q, Liu B, Liu C, Wang H, Geng J, Chen Z, Liu N, Li S (2011) Prog Chem 23:1446–1453Google Scholar
  11. 11.
    Sprynskyy M, Kowalkowski T, Tutu H, Cukrowska EM, Buszewski B (2011) Chem Eng J 171:1185–1193CrossRefGoogle Scholar
  12. 12.
    Hussein AEM (2011) J Radioanal Nucl Chem 289:321–329CrossRefGoogle Scholar
  13. 13.
    Zhao HT, Jaynes WF, Vance GF (1996) Chemosphere 33:2089–2100CrossRefGoogle Scholar
  14. 14.
    Huh JK, Song DI, Jeon YW (2000) Sep Sci Technol 35:243–259CrossRefGoogle Scholar
  15. 15.
    Upson R, Burns S (2006) J Colloid Interface Sci 297:70–76CrossRefGoogle Scholar
  16. 16.
    Hsu YH, Wang MK, Pai CW, Wang YS (2000) Appl Clay Sci 16:147–159CrossRefGoogle Scholar
  17. 17.
    Dentel SK, Jamrah AI, Sparks DL (1998) Water Res 32:3689–3697CrossRefGoogle Scholar
  18. 18.
    Lee JJ, Choi J, Park JW (2002) Chemosphere 49:1309–1315CrossRefGoogle Scholar
  19. 19.
    Oyanedel-Craver VA, Fuller M, Smith JA (2007) J Colloid Interface Sci 309:485–492CrossRefGoogle Scholar
  20. 20.
    Akar ST, Yetimoglu Y, Gedikbey T (2009) Desalination 244:97–108CrossRefGoogle Scholar
  21. 21.
    Majdan M, Pikus S, Gajowiak A, Gładysz-Płaska A, Krzyżanowska H, Żuk J, Bujacka M (2010) Appl Surf Sci 256:5416–5421CrossRefGoogle Scholar
  22. 22.
    Majdan M, Pikus S, Gajowiak A, Sternik D, Zieba E (2010) J Hazard Mater 184:662–670CrossRefGoogle Scholar
  23. 23.
    Liu Y, Cao X, Hua R, Wang Y, Liu Y, Pang C, Wang Y (2010) Hydrometallurgy 104:150–155CrossRefGoogle Scholar
  24. 24.
    Bayramoglu G, Celik G, Arica M (2006) J Hazard Mater 136:345–353CrossRefGoogle Scholar
  25. 25.
    Aytas S, Yurtlu M, Donat R (2009) J Hazard Mater 172:667–674CrossRefGoogle Scholar
  26. 26.
    Hazer O, Kartal Ş (2010) Talanta 82:1974–1979CrossRefGoogle Scholar
  27. 27.
    Parab H, Joshi S, Shenoy N, Verma R, Lali A, Sudersanan M (2005) Bioresour Technol 96:1241–1248CrossRefGoogle Scholar
  28. 28.
    Ghaemi A, Torab-Mostaedi M, Ghannadi-Maragheh M (2011) J Hazard Mater 190:916–921CrossRefGoogle Scholar
  29. 29.
    Psareva T, Zakutevskyy O, Chubar N, Strelko V, Shaposhnikova T, Carvalho J, Correia M (2005) Colloid Surf A 252:231–236CrossRefGoogle Scholar
  30. 30.
    Anirudhan TS, Rijith S, Tharun AR (2010) Colloid Surf A 368:13–22CrossRefGoogle Scholar
  31. 31.
    Anirudhan TS, Divya L, Suchithra PS (2009) J Environ Manag 90:549–560CrossRefGoogle Scholar
  32. 32.
    Donat RJ (2009) Chem Thermodyn 41:829–835CrossRefGoogle Scholar
  33. 33.
    Kilincarslan A, Akyil S (2005) J Radioanal Nucl Chem 264(3):541–548CrossRefGoogle Scholar
  34. 34.
    Zhu W, Liu Z, Chen L, Dong Y (2011) J Radioanal Nucl Chem 289(3):781–788CrossRefGoogle Scholar
  35. 35.
    Zhao D, Yang S, Chen S, Guo Z, Yang X (2011) J Radioanal Nucl Chem 287(2):557–565CrossRefGoogle Scholar
  36. 36.
    Gao L, Yang Z, Shi K, Wang X, Guo Z, Wu W (2010) J Radioanal Nucl Chem 284(3):519–526CrossRefGoogle Scholar
  37. 37.
    Guerra DL, Leidens VL, Viana RR, Airoldi C (2010) J Solid State Chem 183(5):1141–1149CrossRefGoogle Scholar
  38. 38.
    Yusan S, Aslani MAA, Turkozu DA, Aycan HA, Aytas S, Akyil S (2010) J Radioanal Nucl Chem 283(1):231–238CrossRefGoogle Scholar
  39. 39.
    Mellah A, Chegrouche S, Barkat M (2006) J Colloid Interface Sci 296(2):434–441CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • You-Qun Wang
    • 2
    • 3
  • Zhi-bin Zhang
    • 1
    • 2
    • 3
  • Qin Li
    • 2
    • 3
  • Yun-Hai Liu
    • 1
    • 2
    • 3
  1. 1.State Key Laboratory Breeding Base of Nuclear Resources and Environment (East China Institute of Technology)Ministry of EducationNanchangPeople’s Republic of China
  2. 2.Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National DefenseEast China Institute of TechnologyFuzhouPeople’s Republic of China
  3. 3.Department of Chemistry, Biological and Materials SciencesEast China Institute of TechnologyFuzhouPeople’s Republic of China

Personalised recommendations