Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 292, Issue 3, pp 1411–1415 | Cite as

Polymer-coated magnetic nanoparticles for rapid bioassay of 90Sr in human urine samples

  • Zack Varve
  • Edward P. C. Lai
  • Chunsheng Li
  • Baki B. Sadi
  • Gary H. Kramer
Article

Abstract

A rapid bioassay for 90Sr was developed involving preconcentration of 90Sr/90Y from human urine samples with a cation exchange polymer (poly–acrylamido–methyl–propanesulfonic acid) coated onto magnetic nanoparticles, followed by selective elution of 90Sr (over 90Y) with phosphate for determination by liquid scintillation analysis. The minimum detectable activity for this method (4.9 ± 0.5 Bq/L) is lower than the required sensitivity of 19 Bq/L for 90Sr in human urine samples, as defined in the requirements for radiation emergency bioassay techniques for the public and first responders based on the dose threshold for possible medical attention recommended by the International Commission on Radiological Protection. The relative bias was 9.2%, the relative precision was 3.2%, and the linear dynamic range covered 12–600 Bq/L. This simple and rapid bioassay method is found to be in compliance with the HPS ANSI N13.30 performance criteria for radiobioassay.

Keywords

90Sr 90Human urine Magnetic nanoparticles Polymer coating Phosphate elution Liquid scintillation counting Bioassay 

Notes

Acknowledgments

This project is part of the CRTI06-230RD research program on Rapid Methods for Emergency Radiobioassay.

References

  1. 1.
    Agency for Toxic Substances and Disease Registry (2001) Toxicological profile of strontium. Atlanta, GeorgiaGoogle Scholar
  2. 2.
    American National Standard N13.30 (1996) Performance Criteria for Radiobioassay, Health Physics SocietyGoogle Scholar
  3. 3.
    Hrdina A, Lai EPC, Li C, Sadi BB, Kramer GH (2001) Preliminary studies of an 18-crown-6 ether modified magnetic cation exchange polymer in rapid 90Sr bioassay. Health Phys 101:187–195CrossRefGoogle Scholar
  4. 4.
    Antonio CL, Rivard JW (2009) Determination of an environmental background level of 90Sr in urine for the Hanford bioassay program. Health Phys 97:S180–S182CrossRefGoogle Scholar
  5. 5.
    Alvarez A, Navarro N (1996) Method for actinides and 90Sr determination in urine samples. Appl Radiat Isot 47:869–873CrossRefGoogle Scholar
  6. 6.
    Plionis A, Gonzales ER, Landsberger S, Peterson DS (2009) Evaluation of flow scintillation analysis for the determination of Sr-90 in bioassay samples. Appl Radiat Isot 67:14–20CrossRefGoogle Scholar
  7. 7.
    Sadi BB, Jodayree S, Lai EPC, Kochermin V, Kramer GH (2011) Rapid bioassay method for the determination of 90Sr in human urine sample. Radiat Prot Dosim 140:41–48CrossRefGoogle Scholar
  8. 8.
    Li CS, Sadi BB, Moodie G, Daka JN, Lai EPC, Kramer GH (2009) Field deployable technique for 90Sr emergency bioassay. Radiat Prot Dosim 136:82–86CrossRefGoogle Scholar
  9. 9.
    Maxwell S, Culligan B (2009) Rapid separation method for emergency water and urine samples. J Radioanal Nucl Chem 279:901–907CrossRefGoogle Scholar
  10. 10.
    Bahraini N, Lai EPC, Li C, Sadi BB, Kramer GH (2011) Molecularly imprinted polymers for 90Sr urine bioassay. Health Phys 101:128–135CrossRefGoogle Scholar
  11. 11.
    Brown D, Pietrzyk D (1989) Anion-cation separations on mixed bed alumina-silica column. J Chromatogr 466:291–300CrossRefGoogle Scholar
  12. 12.
    Yu S, Chow GM (2004) Carboxyl group functionalized ferromagnetic iron oxide nanoparticles for potential bio-applications. J Mater Chem 14:2781–2786CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Zack Varve
    • 1
  • Edward P. C. Lai
    • 1
  • Chunsheng Li
    • 2
  • Baki B. Sadi
    • 2
  • Gary H. Kramer
    • 2
  1. 1.Department of ChemistryCarleton UniversityOttawaCanada
  2. 2.Radiation Protection BureauHealth CanadaOttawaCanada

Personalised recommendations