Modifying attapulgite clay by ammonium citrate tribasic for the removal of radionuclide Th(IV) from aqueous solution

  • Tao Hu
  • Liqiang Tan


The ammonium citrate tribasic was successfully modified to attapulgite clay and the effect of modifying was characterized by FTIR and XRD techniques. Experimental results showed that the ammonium citrate tribasic modified attapulgite clay had a strong sorption ability to remove Th(IV) from aqueous solutions. The sorption of Th(IV) from aqueous solutions has been systematically investigated as a function of several variables including contact time, solid content, pH, ionic strength, Fulvic acid (FA)/humic acid (HA) and temperature under ambient conditions. The results indicate that the sorption of Th(IV) onto ammonium citrate tribasic modified attapulgite clay is strongly dependent on pH, Th(IV) initial concentration, ionic strength, temperature and HA/FA. Surface complexation and ionic exchange are the main sorption mechanisms. Sorption of Th(IV) onto ammonium citrate tribasic modified attapulgite is quick and can be fitted by a pseudo-second-order rate model very well. Sorption of Th(IV) onto ammonium citrate tribasic modified attapulgite is promoted at higher temperature and the sorption reaction is an endothermic process. Langmuir isotherm model fits the experimental data better than Freundlich and D-R isotherm models. The results suggest that the ammonium citrate tribasic modified attapulgite sample is a suitable material in the preconcentration and solidification of radionuclide Th(IV) from large volumes of aqueous solutions.


Th(IV) Sorption Attapulgite Ammonium citrate tribasic pH 



This work is supported by Jiangsu Natural Science Foundation (BK2009664).


  1. 1.
    Zhang LP, Zhang H, Ge ZW, Yu XJ (2011) J Radioanal Nucl Chem 288:537–546CrossRefGoogle Scholar
  2. 2.
    Chen L, Yu XJ, Zhao ZD, Pan JS (2008) J Radioanal Nucl Chem 275:209–216CrossRefGoogle Scholar
  3. 3.
    Yu S, Ren A, Cheng J, Song XP, Chen C, Wang X (2007) J Radioanal Nucl Chem 273:129–133CrossRefGoogle Scholar
  4. 4.
    EI-Khouly SH (2006) J Radioanal Nucl Chem 270:391–398CrossRefGoogle Scholar
  5. 5.
    Davila-Rangel JI, Solache-Rios M (2006) J Radioanal Nucl Chem 270:465–471CrossRefGoogle Scholar
  6. 6.
    Khan SA (2003) J Radioanal Nucl Chem 258:3–6CrossRefGoogle Scholar
  7. 7.
    Koudsi UY, Dyer A (2001) J Radioanal Nucl Chem 247:209–219CrossRefGoogle Scholar
  8. 8.
    Hanzel R, Rajec P (2000) J Radioanal Nucl Chem 246:607–615CrossRefGoogle Scholar
  9. 9.
    Choppin GR (1999) Radiochim Acta 85:89–96Google Scholar
  10. 10.
    Sheng GD, Hu J, Wang XK (2008) Appl Radiat Isot 66:1313–1320CrossRefGoogle Scholar
  11. 11.
    Tan LQ, Jin YL, Chen J, Wu J, Cheng XC, Feng LD (2011) J Radioanal Nucl Chem 289:601–610CrossRefGoogle Scholar
  12. 12.
    Song XP, Wang SW, Chen L, Zhang ML, Dong YH (2009) Appl Radiat Isot 67:1007–1012CrossRefGoogle Scholar
  13. 13.
    Tan XL, Hu J, Zhou X, Yu SM, Wang XK (2008) Radiochim Acta 96:487–495CrossRefGoogle Scholar
  14. 14.
    Tan XL, Wang XK, Geckeis H, Rabung T (2008) Environ Sci Technol 42(17):6532–6537CrossRefGoogle Scholar
  15. 15.
    Tan XL, Fang M, Li JX, Lu Y, Wang XK (2009) J Hazard Mater 168:458–465CrossRefGoogle Scholar
  16. 16.
    Ho YS, McKay G (1998) Process Saf Environ Prot 76:183–191CrossRefGoogle Scholar
  17. 17.
    Yang ST, Li JX, Lu Y, Chen YX, Wang XK (2009) Appl Radiat Isot 671:600–1608Google Scholar
  18. 18.
    Weber WJ, Morris CJ (1963) J Sanit Eng Div Am Soc Civ Eng 89:31–60Google Scholar
  19. 19.
    Yang ST, Zhao DL, Zhang H, Lu SS, Chen L, Yu XJ (2010) J Hazard Mater 183:632–640CrossRefGoogle Scholar
  20. 20.
    Xu D, Tan XL, Chen CL, Wang XK (2008) Appl Clay Sci 41:37–46CrossRefGoogle Scholar
  21. 21.
    Ozcan A, Oncu EM, Ozcan AS (2006) Colloids Surf A 277:90–97CrossRefGoogle Scholar
  22. 22.
    Zhao GX, Zhang HX, Fan QH, Ren XM, Li JX, Chen YX, Wang XK (2010) J Hazard Mater 173:661–668CrossRefGoogle Scholar
  23. 23.
    Yu SM, Chen CL, Chang PP, Wang TT, Lu SS, Wang XK (2008) Appl Clay Sci 38:219–226CrossRefGoogle Scholar
  24. 24.
    Li JX, Hu J, Sheng GD, Zhao GX, Huang Q (2009) Colloid Surf A 349:195–201CrossRefGoogle Scholar
  25. 25.
    Zhang H, Yu XJ, Chen L, Jing YJ, Ge ZW (2010) J Environ Radioact 101:1061–1069CrossRefGoogle Scholar
  26. 26.
    Fan QH, Shao DD, Lu Y, Wu WS, Wang XK (2009) Chem Eng J 150:188–195CrossRefGoogle Scholar
  27. 27.
    Hu J, Xu D, Chen L, Wang XK (2009) J Radioanal Nucl Chem 279:701–708CrossRefGoogle Scholar
  28. 28.
    Hu BW, Cheng W, Zhang H, Sheng GD (2010) J Radioanal Nucl Chem 285:389–398CrossRefGoogle Scholar
  29. 29.
    Li XL, Chen CL, Chang PP, Yu SM, Wu WS, Wang XK (2009) Desalination 244:283–292CrossRefGoogle Scholar
  30. 30.
    Chen CL, Wang XK, Jiang H, Hu WP (2007) Colloids Surf A 302:121–125CrossRefGoogle Scholar
  31. 31.
    Chen H, Zhao YG, Wang AQ (2007) J Hazard Mater 149:346–354CrossRefGoogle Scholar
  32. 32.
    Ren XM, Wang SW, Yang ST, Li JX (2010) J Radioanal Nucl Chem 283:253–259CrossRefGoogle Scholar
  33. 33.
    Lu SS, Guo ZQ, Zhang CC, Zhang SW (2011) J Radioanal Nucl Chem 287(2):621–628CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  1. 1.Faculty of Life Science and Chemical EngineeringHuaiyin Institute of TechnologyHuaianPeople’s Republic of China
  2. 2.National Special Superfine Powder Engineering CenterNanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations