Advertisement

Synthesis, radiolabeling and biodistribution of morphine glucuronide (mor-glu)

  • H. Enginar
  • P. Unak
  • F. Z. Biber Müftüler
  • F. Y. Lambrecht
  • E. I. Medine
  • S. Yolcular
  • A. Yurt Kilcar
  • B. Seyitoğlu
  • I. Bulduk
Article

Abstract

The aim of this study was to synthesize a glucuronide conjugated morphine derivative which could be labeled with 131I, as a radiopharmaceutical, and to investigate its radiopharmaceutical potential using biodistribution studies in male Albino Wistar rats. Morphine was extracted from dry capsules of the opium poppy (Papaver somniferum L.). It was conjugated with UDP-glucuronic acid by using UDP-glucuronyl transferase (UDPGT) enzyme rich microsomes, purified by high performance liquid chromatography (HPLC) and characterized by nuclear magnetic resonance (NMR), infrared (IR) spectroscopy and liquid chromatography mass spectroscopy (LC-MS/MS). Normal and receptor blockage biodistribution studies were performed in male Albino Wistar rats. The results of the tissue distribution studies showed that 131I labeled morphine glucuronide (131I-mor-glu) uptake in the small intestine, large intestine and urinary bladder was higher than in the other tissues of the rats in the blocked receptor and unblocked receptor. A greater uptake of the radio labeled substance was observed in the hypothalamus and mid brain than in the other branches of the rats’ brains.

Keywords

Morphine glucuronide Radiolabeling 131Biodistribution 131I labeled morphine-glucuronide (131I-mor-glu) 

Notes

Acknowledgments

The authors thank for the financial supports from The Scientific and Technical Research Council of Turkey (TUBITAK, Project number 2004-104T187) and T.R Prime Ministry State Planning Organization (DPT, Project Number 2006 DPT 06).

References

  1. 1.
    Hoffman B (2009) Socio-cultural transformation and drug dependence in youth. Trakia J Sci 7(3):21–28Google Scholar
  2. 2.
    Iwata H, Tsuchiya S, Ueno K, Nakamura T, Yano S (2008) Morphine-6-glucuronide induces contraction of the ileal circular muscle more potently than morphine in mice. Eur J Pharmacol 600(1–3):130–132CrossRefGoogle Scholar
  3. 3.
    Goumon Y, Laux A, Muller A, Aunis D (2009) Central and peripheral endogenous morphine. An R Acad Nac Farm 75(3):389–418Google Scholar
  4. 4.
    Reid CM, Gooberman-Hill R, Hanks GW (2008) Opioid analgesics for cancer pain: symptom control for the living or comfort for the dying? A qualitative study to investigate the factors influencing the decision to accept morphine for pain caused by cancer. Ann Oncol 19(1):44–48CrossRefGoogle Scholar
  5. 5.
    Van Ree JM, Gerrits MA, Vanderschuren LJ (1999) Opioids, reward and addiction: an encounter of biology, psychology, and medicine. Pharmacol Rev 51(2):341–396Google Scholar
  6. 6.
    Bowers LD, Sanaullah (1996) Direct measurement of steroid sulfate and glucuronide conjugates with high-performance liquid chromatography-mass spectrometry. J Chromatogr B 687(1):61–68CrossRefGoogle Scholar
  7. 7.
    Kaushik R, Levine B, William RLC (2006) A brief review: HPLC methods to directly detect drug glucuronides in biological matrices (Part I). Anal Chim Acta 556(2):255–266CrossRefGoogle Scholar
  8. 8.
    Rashid BA, Aherne GW, Katmeh MF, Kwasowski P, Stevenson D (1998) Determination of morphine in urine by solid-phase immunoextraction and high-performance liquid chromatography with electrochemical detection. J Chromatogr A 797(1–2):245–250CrossRefGoogle Scholar
  9. 9.
    Brown RT, Carter NE, Mayalarp SP, Scheinmann F (2000) A simple synthesis of morphine-3,6-di-β-d-glucuronide. Tetrahedron 56(32):7591–7594CrossRefGoogle Scholar
  10. 10.
    Brown RT, Carter NE, Scheinmann F, Turner NJ (1995) Synthesis of morphine-6-glucuronide via a highly selective enzyme catalysed hydrolysis reaction. Tetrahedron Lett 36(7):1117–1120CrossRefGoogle Scholar
  11. 11.
    Muller A, Glattard E, Taleb O, Kemmel V, Laux A, Miehe M, Delalande F, Roussel G, Van Dorsselaer A, Metz-Boutigue MH, Aunis D, Goumon Y (2008) Endogenous morphine in SH-SY5Y cells and the mouse cerebellum. PLoS One 3(2):1–13CrossRefGoogle Scholar
  12. 12.
    Mendez-Rojaz MA, Kharisov BI, Tsivadze AY (2006) Recent advances on technetium complexes: coordination chemistry and medical applications. J Coord Chem 59(1):1–63CrossRefGoogle Scholar
  13. 13.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  14. 14.
    Enginar H, Ünak P, Biber Müftüler FZ, Yurt-Lambrecht F, Medine EI, Yolcular S, Yurt A, Seyitoğlu B, Bulduk I (2009) Synthesis, radiolabeling and in vivo tissue distribution of codeine-glucuronide. INCS News 22(6–2):46–56Google Scholar
  15. 15.
    Unak T, Unak P (1993) Synkavit and its direct labelling with iodine-125, as a potential anti-cancer drug. Nucl Med Biol 20(7):889–894CrossRefGoogle Scholar
  16. 16.
    Enginar H, Unak P, Yurt-Lambrecht F, Biber-Muftuler FZ, Seyitoglu B, Yurt A, Yolcular S, Medine I, Bulduk I (2010) Radiolabeling of morphine with (131)I and its biodistribution in rats. Cancer Biother Radio 25(4):409–416CrossRefGoogle Scholar
  17. 17.
    Enginar H, Ünak P, Lambrecht FY, Biber Müftüler FZ, Medine EI, Yolcular S, Yurt A, Seyitoğlu B, Bulduk I (2009) Radiolabeling of codeine with 131I and its biodistribution in rats. J Radioanal Nucl Chem 280(2):363–370CrossRefGoogle Scholar
  18. 18.
    Muftuler FZ, Unak P, Yolcular S, Kilcar AY, Ichedef C, Enginar H, Sakarya S (2010) Synthesis, radiolabeling and in vivo tissue distribution of an anti-oestrogen glucuronide compound, 99mTc-TOR-G. Anticancer Res 30(4):1243–1249Google Scholar
  19. 19.
    Biber Muftuler FZ, Unak P, Ichedef C, Demir I (2011) Synthesis of a radioiodinated antiestrogen glucuronide compound (TAM-G). J Radioanal Nucl Chem 287:679–789CrossRefGoogle Scholar
  20. 20.
    Unak T, Avcıbaşı U, Yıldırım Y, Cetinkaya B (2003) Attempts to develop a new nuclear measurement technique of β-glucuronidase levels in biological samples. Czech J Phys 53(1):797–802CrossRefGoogle Scholar
  21. 21.
    Biber Muftuler FZ, Demir I, Unak P, Ichedef C, Yurt Kilcar A (2011) Bioavailability of 99mTc-paclitaxel-glucuronide (99mTc-PAC-G). Radiochim Acta 99(5):301–306CrossRefGoogle Scholar
  22. 22.
    Jackson KC, Stanford B (2004) Opioid pharmacotherapy in terminal disease. Pain Pract 4(1):30–38CrossRefGoogle Scholar
  23. 23.
    Smith HS (2009) Opioid metabolism. Mayo Clin Proc 84(7):613–624Google Scholar
  24. 24.
    Fries DS (1995) Analgesics in principles of medicinal chemistry. Williams & Wilkins Media, PhiladelphiaGoogle Scholar
  25. 25.
    Gutstein HB, Akil H (2001) Opioid analgesics in the pharmacological basis of therapeutics. Mcgraw-Hill, New YorkGoogle Scholar
  26. 26.
    Rice KC (1985) The development of a practical total synthesis of natural and unnatural codeine, morphine and thebaine. Springer-Verlag, BerlinGoogle Scholar
  27. 27.
    Ishikawa K, Shibanoki S, McGaugh JL (1983) Direct correlation between level of morphine and its biochemical effect on monoamine systems in mouse brain. Evidence for involvement of dopaminergic neurons in the pharmacological action of acute morphine. Biochem Pharmacol 32(9):1473–1478CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • H. Enginar
    • 1
  • P. Unak
    • 2
  • F. Z. Biber Müftüler
    • 2
  • F. Y. Lambrecht
    • 2
  • E. I. Medine
    • 2
  • S. Yolcular
    • 2
  • A. Yurt Kilcar
    • 2
  • B. Seyitoğlu
    • 2
  • I. Bulduk
    • 3
  1. 1.Department of ChemistryAfyon Kocatepe UniversityAfyonkarahisarTurkey
  2. 2.Institute of Nuclear ScienceEge UniversityIzmirTurkey
  3. 3.Bolvadin Alkaloid FactoryAfyonkarahisarTurkey

Personalised recommendations