Skip to main content
Log in

Individual extraction constants of some divalent metal cations in the two-phase water-phenyltrifluoromethyl sulfone system

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium \( {\text{M}}^{ 2+ } \left( {\text{aq}} \right) + {\text{Sr}}^{ 2+ } \left( {\text{org}} \right) \Leftrightarrow {\text{M}}^{ 2+ } \left( {\text{org}} \right) + {\text{ Sr}}^{ 2+ } \left( {\text{aq}} \right) \) taking place in the two-phase water–phenyltrifluoromethyl sulfone (abbrev. FS 13) system (M2+ = Mg2+, Ca2+, Ba2+, Cu2+, Zn2+, Cd2+, Pb2+, \( {\text{UO}}_{2}^{2 + } \), Mn2+, Fe2+, Co2+, Ni2+; aq = aqueous phase, org = FS 13 phase) were evaluated. Furthermore, the individual extraction constants of the M2+ cations in this two-phase system were calculated; they were found to increase in the series of Mg2+,\( {\text{UO}}_{2}^{2 + } \) < Ca2+, Co2+ < Cd2+, Ni2+ < Zn2+ < Cu2+, Mn2+, Fe2+ < Pb2+ < Ba2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schulz WW, Horwitz EP (1988) Sep Sci Technol 23:1191

    Article  CAS  Google Scholar 

  2. Cuillerdier C, Musikas C, Hoel P, Nigond L, Vitart X (1991) Sep Sci Technol 26:1229

    Article  CAS  Google Scholar 

  3. Mahajan GR, Prabhu DR, Manchanda VK, Badheka LP (1998) Waste Manag 18:125

    Article  CAS  Google Scholar 

  4. Romanovskiy VN, Smirnov IV, Babain VA, Todd TA, Herbst RS, Law JD, Brewer KN (2001) Solvent Extr Ion Exch 19:1

    Article  CAS  Google Scholar 

  5. Law JD, Herbst RS, Todd TA, Romanovskiy VN, Babain VA, Esimantovskiy VM, Smirnov IV, Zaitsev BN (2001) Solvent Extr Ion Exch 19:23

    Article  CAS  Google Scholar 

  6. Matsumura T, Takeshita K (2006) J Nucl Sci Technol (Japan) 43:824

    Article  CAS  Google Scholar 

  7. Ansari SA, Pathak PN, Manchanda VK, Husain M, Prasad AK, Parmar VS (2005) Solvent Extr Ion Exch 23:463

    Article  CAS  Google Scholar 

  8. Ansari SA, Pathak PN, Husain M, Prasad AK, Parmar VS, Manchanda VK (2006) Radiochim Acta 94:307

    Article  CAS  Google Scholar 

  9. van Hecke K, Modolo G (2004) J Radioanal Nucl Chem 261:269

    Article  Google Scholar 

  10. Dam HH, Reinhoudt DN, Verboom W (2007) Chem Soc Rev 36:367

    Article  CAS  Google Scholar 

  11. Alyapyshev MY, Babain VA, Smirnov IV (2004) Radiochem (Radiokhimiya) Engl Ed 46:270

    CAS  Google Scholar 

  12. Alyapyshev MY, Babain VA, Smirnov IV, Shadrin AY (2006) Radiochem (Radiokhimiya) Engl Ed 48:369

    Google Scholar 

  13. Babain VA, Alyapyshev MY, Kiseleva RN (2007) Radiochim Acta 95:217

    Article  CAS  Google Scholar 

  14. Alyapyshev M, Babain V, Borisova M, Eliseev I, Kirsanov D, Kostin A, Legin A, Reshetova M, Smirnova Z (2010) Polyhedron 29:1998

    Article  CAS  Google Scholar 

  15. Smirnov IV, Chirkov AV, Babain VA, Pokrovskaya EY, Artamonova TA (2009) Radiochim Acta 97:593

    Article  CAS  Google Scholar 

  16. Sasaki Y, Morita Y, Kitatsuji Y, Kimura T (2010) Chem Lett 39:898

    Article  CAS  Google Scholar 

  17. Makrlík E, Vaňura P (1985) Talanta 32:423

    Article  Google Scholar 

  18. Makrlík E, Vaňura P, Selucký P (2009) J Solut Chem 38:1129

    Article  Google Scholar 

  19. Makrlík E, Vaňura P, Selucký P (2010) J Solut Chem 39:692

    Article  Google Scholar 

  20. Makrlík E, Vaňura P, Selucký P, Babain VA, Smirnov IV (2009) Acta Chim Slov 56:718

    Google Scholar 

  21. Makrlík E, Vaňura P, Selucký P (2010) Acta Chim Slov 57:485

    Google Scholar 

  22. Makrlík E, Vaňura P (2009) Z Phys Chem 223:247

    Article  Google Scholar 

  23. Makrlík E, Vaňura P, Selucký P (2009) Z Phys Chem 223:253

    Article  Google Scholar 

  24. Makrlík E, Dybal J, Vaňura P (2009) Z Phys Chem 223:713

    Article  Google Scholar 

  25. Makrlík E, Vaňura P, Selucký P (2009) J Radioanal Nucl Chem 279:287

    Article  Google Scholar 

  26. Makrlík E, Vaňura P, Sedláková Z (2009) J Radioanal Nucl Chem 280:607

    Article  Google Scholar 

  27. Makrlík E, Vaňura P, Sedláková Z (2010) J Radioanal Nucl Chem 283:157

    Article  Google Scholar 

  28. Makrlík E, Vaňura P (2010) J Radioanal Nucl Chem 283:497

    Article  Google Scholar 

  29. Rais J (1971) Collect Czech Chem Commun 36:3253

    CAS  Google Scholar 

  30. Popovych O, Dill AJ (1969) Anal Chem 41:456

    Article  CAS  Google Scholar 

  31. Alexander R, Parker AJ (1967) J Am Chem Soc 89:5549

    Article  CAS  Google Scholar 

  32. Alexander R, Ko ECF, Parker AJ, Broxton TJ (1968) J Am Chem Soc 90:5049

    Article  CAS  Google Scholar 

  33. Krishnan CV, Friedman HL (1969) J Phys Chem 73:3934

    Article  CAS  Google Scholar 

  34. Makrlík E, Rais J, Baše K, Plešek J, Vaňura P (1995) J Radioanal Nucl Chem 198:359

    Article  Google Scholar 

  35. Makrlík E (1997) Polish J Chem. 71:396

    Google Scholar 

  36. Makrlík E, Božek F (1998) Polish J Chem 72:949

    Google Scholar 

  37. Makrlík E, Selucký P, Vaňura P, Budka J (2010) J Radioanal Nucl Chem 286:155

    Article  Google Scholar 

  38. Makrlík E, Vaňura P (2010) J Radioanal Nucl Chem 285:683

    Article  Google Scholar 

  39. Makrlík E, Vaňura P, Selucký P (2011) J Radioanal Nucl Chem 288:177

    Article  Google Scholar 

  40. Hawthorne MF, Young DC, Andrews TD, Howe DV, Pilling RL, Pitts AD, Reintjes M, Warren LF, Wegner PA (1968) J Am Chem Soc 90:879

    Article  CAS  Google Scholar 

  41. Makrlík E (1992) Collect Czech Chem Commun 57:289

    Article  Google Scholar 

  42. Makrlík E, Hung LQ (1983) J Electroanal Chem 158:277

    Article  Google Scholar 

  43. Makrlík E (1985) J Colloid Interface Sci 108:549

    Article  Google Scholar 

  44. Makrlík E, Selucký P, Vaňura P (unpublished results)

  45. Makrlík E, Vaňura P (1990) J Electroanal Chem 287:159

    Article  Google Scholar 

  46. Makrlík E (1990) Collect Czech Chem Commun 55:2606

    Article  Google Scholar 

  47. Makrlík E (1990) Collect Czech Chem Commun 55:2610

    Article  Google Scholar 

  48. Makrlík E (1992) J Colloid Interface Sci 150:42

    Article  Google Scholar 

  49. Makrlík E, Budka J, Vaňura P, Selucký P (2008) J Radioanal Nucl Chem 277:487

    Article  Google Scholar 

  50. Makrlík E, Vaňura P, Selucký P (2008) Acta Chim Slov 55:430

    Google Scholar 

  51. Makrlík E, Budka J, Vaňura P, Selucký P (2008) J Serbian Chem Soc 73:1181

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency of Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Project No.: 42900/1312/3114 “Environmental Aspects of Sustainable Development of Society” and by the Czech Ministry of Education, Youth and Sports, Project MSM 6046137307.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Makrlík.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makrlík, E., Selucký, P. & Vaňura, P. Individual extraction constants of some divalent metal cations in the two-phase water-phenyltrifluoromethyl sulfone system. J Radioanal Nucl Chem 290, 397–401 (2011). https://doi.org/10.1007/s10967-011-1374-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1374-6

Keywords

Navigation