Studies on uranium recovery from inlet stream of Effluent Treatment Plant by novel “In-House” sorbent

  • Sangita Pal
  • Suchismita Mishra
  • S. K. Satpati
  • G. G. Pandit
  • P. K. Tewari
  • V. D. Puranik


“In-House” resin Polyacrylhydroxamic acid (PHOA) has been synthesized and utilized targeting ground water remediation; recovery of uranium from low concentration aqueous solution e.g., mining activities related water, flooding of excavated or deplumed areas, nuclear plant washed effluent and process generated effluents in nuclear plant during front-end as well as back-end treatment. In the present study, treatment of field effluent containing heavy metals and radio-nuclides from contaminated mining sites reflected preference for uranium with respect to manganese. The specific complexation between the extractant and metal ion especially uranium provides high distribution co-efficient (K d) for uranium (K d,U = 1,450 mL/g from inlet of Effluent Treatment Plant (ETP) and K d,U = 74,950 mL/g for synthetic solution) compared to high level impurity (1,000 times higher concentration) of manganese (K d,Mn = 111 mL/g from inlet of ETP and K d,Mn = 10,588 mL/g for synthetic solution). The “In-House” resin showed significant extractability (70–95% elution efficiency) and indicates a possibility of selective removal/recovery of the valuable metal ions even from secondary sources. As a specialty, resin can be regenerated and reused.


Uranium Recovery Effluent Polymeric sorbent Sorption Kd values 



In procurement and preparation of resin material, help from Sh. Chunu Soren, PEUS, DD, and for field sample procurement, and analysis, Sh. Dilip Chowdhuri, EAD, BARC is acknowledged.


  1. 1.
    Dabrowski A, Hubicki Z, Podkościelny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56(2):91–106CrossRefGoogle Scholar
  2. 2.
    Bae SY, Southard GL, Murray GM (1999) Molecularly imprinted ion exchange resin for purification, preconcentration and determination of UO by spectrophotometry and plasma spectrometry. Anal Chim Acta 397(1–3):173–181CrossRefGoogle Scholar
  3. 3.
    Ashbrook AW (1975) Commercial chelating solvent extraction reagents, I. Purification and isomer separation of 2-hydroxyoximes. J Chromatogr A 105:141–150CrossRefGoogle Scholar
  4. 4.
    Slavik D, Dev V, Yoram K, Doloressa G, David F, Ting KC, Burt E (1997) Removal of uranium from water using terrestrial plants. Environ Sci Technol 31:3468–3474CrossRefGoogle Scholar
  5. 5.
    Lloyd JR, Renshaw JC (2005) Bioremediation of radioactive waste: radionuclide-microbe interactions in laboratory and field scale studies. Curr Opin Biotechnol 16:254–260CrossRefGoogle Scholar
  6. 6.
    Fischer J, Lieser KH (1993) Cellulose exchangers with tailor made chelating groups for selective separation of uranium. Fresenius J Anal Chem 346:10–11Google Scholar
  7. 7.
    Kapoor A, Viraraghavan T, Cullimore DR (1999) Removal of heavy metal using the fungus (Aspergillus niger). Bioresour Technol 70:95CrossRefGoogle Scholar
  8. 8.
    Mohite BS, Jadav AS (2003) Column chromatographic separation of uranium (VI) and other elements using poly dibenzo-18-crown-60 and ascorbic acid medium. J Chromatogr A 983:277–281CrossRefGoogle Scholar
  9. 9.
    Saxena AK (2003) Experiments for recovery of uranium from seawater by harnessing tidal energy. BARC Newsletter, Founder’s Day Special Issue, No. 249, pp 246–250Google Scholar
  10. 10.
    Pal Sangita S, Tewari PK (2011) Composite sorbent for attrition minimization. Desalination Water Treat 28:1–6Google Scholar
  11. 11.
    Pal Sangita S, Prabhakar S, Thalor KL, Tewari PK (2010) Strategy of deriving ‘WEALTH from WASTE’ from Concentrated Brine of Desalination Plant. Int J Nucl Desalination 4:189CrossRefGoogle Scholar
  12. 12.
    Pal Sangita S, Ramachandhran V, Prabhakar S, Tewari PK, Sudersanan M (2006) Polyhydroxamic acid for uranium recovery. J Macromol Sci A 43:735–747Google Scholar
  13. 13.
    Pal Sangita S, Satpati SK, Hareendran K, Kumar S, Thalor KL, Roy SB, Tewari PK (2006) Recovery and pre-concentration of uranium from secondary effluent using novel resin. Int J Nucl Desalination 4:28–36Google Scholar
  14. 14.
    Preetha CR, Gladis JM (2005) Removal of toxic uranium from synthetic nuclear power reactor effluents. React Funct Polym 63:143–153CrossRefGoogle Scholar
  15. 15.
    Shinkai S, Kawaguchi H, Manabe O (1988) Selective adsorption of UO2 2+ to a polymer resin immobilizing calixarene-based uranophiles. J Polym Sci C: Polym Lett 26:391–396Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Sangita Pal
    • 1
  • Suchismita Mishra
    • 2
  • S. K. Satpati
    • 3
  • G. G. Pandit
    • 2
  • P. K. Tewari
    • 1
  • V. D. Puranik
    • 2
  1. 1.Desalination Division (DD)BARCMumbaiIndia
  2. 2.Environmental Assessment Division (EAD)BARCMumbaiIndia
  3. 3.Uranium Extraction Division (UED)BARCMumbaiIndia

Personalised recommendations