Journal of Radioanalytical and Nuclear Chemistry

, Volume 289, Issue 2, pp 337–343 | Cite as

Transport and retention of strontium in surface-modified quartz sand with different wettability

  • Yifei Li
  • Shuaihui Tian
  • Tianwei Qian


Instead of radioactive 90Sr, common strontium chloride was used to simulate the migration of radioactive strontium chloride in surface hydroxylated, silanized, and common quartz sand. The sorption and retardation characteristics of strontium (Sr2+) in these surface modified quartz sands were studied by batch tests and column experiments. The equilibrium sorption data for Sr2+ on different wettability sands were described by the Langmuir and Freundlich isotherm models, and the Langmuir model has been found to provide better correlation for hydrophilic sand. The breakthrough curves (BTCs) of Sr2+ in these media were analyzed with the equilibrium convection–dispersion equation (CDE) and a non-equilibrium two-region mobile–immobile model (TRM) using a nonlinear least square curve-fitting program CXTFIT. The TRM model showed better fit to the measured BTCs of Sr2+, and the parameters of the fraction of mobile water indicated that significant preferential flow effected the non-equilibrium transport of Sr2+. Although TRM model could not fit the Sr2+ BTCs very well, the parameter estimated by TRM model may be more reliable than those obtained from batch experiments because the transport of Sr2+ in these kind of sand is non-equilibrium processes.


Strontium Radionuclide migration Retardation factor Wettability Breakthrough curves 



This work was partially supported by the Natural Science Foundation of China (No. 40872199), the Natural Science Foundation of Shanxi Province (No. 2010021012_0).


  1. 1.
    Schneider M, Thomas S, Froggatt A, Koplow D (2009) The world nuclear industry status report 2009, Paris, p 5Google Scholar
  2. 2.
    Nash KL, Lumetta GJ, Clark SB, Clark SB, Friese J (2006) Separations for the nuclear fuel cycle in the 21st century. Oxford University Press, Washington DCGoogle Scholar
  3. 3.
    Long JCS (2004) Annu Rev Earth Planet Sci 32:363CrossRefGoogle Scholar
  4. 4.
    Bradford SA, Rathfelder KM, Lang J, Abriola LM (2003) J Contam Hydrol 67:133CrossRefGoogle Scholar
  5. 5.
    Ritsema CJ, Dekker LW (1994) Water Res Res 30:2519CrossRefGoogle Scholar
  6. 6.
    Ritsema CJ, Dekker LW (1996) Aust J Soil Res 34:475CrossRefGoogle Scholar
  7. 7.
    Quyum A, Achari G, Goodman RH (2002) Sci Total Environ 296:77CrossRefGoogle Scholar
  8. 8.
    O’Carroll DM, Bradford SA, Abriola M (2001) J Contam Hydrol 73:39CrossRefGoogle Scholar
  9. 9.
    Crist JT, Zevi Y, McCarthy JF, Troop JA, Steenhuis TS (2005) Vadose Zone J 4:184Google Scholar
  10. 10.
    Zuo R, Teng YU, Wang JS (2009) J Radioanal Nucl Chem 279:893CrossRefGoogle Scholar
  11. 11.
    Sun J, Wu T, Liu F, Wang Z, Zhang X (2000) Langumir 16:4620CrossRefGoogle Scholar
  12. 12.
    Nieber JL, Bauters TWJ, Steenhuis TS, Parlange JY (2000) J Hydrol 231:295CrossRefGoogle Scholar
  13. 13.
    Bachmann J, Woche SK, Goebel MO (2003) Water Res Res 39:1353CrossRefGoogle Scholar
  14. 14.
    Dekker LW, Ritsema CJ (2000) J Hydrol 231:148CrossRefGoogle Scholar
  15. 15.
    Neumann AW, Good RJ (1972) J Colloid Interf Sci 38:341CrossRefGoogle Scholar
  16. 16.
    Tsai TL, Lee CP, Lin TY, Wei HJ, Men LC (2010) J Radioanal Nucl Chem 285:733CrossRefGoogle Scholar
  17. 17.
    Wang X, Chen Y, Wu Y (2004) J Radioanal Nucl Chem 261:497CrossRefGoogle Scholar
  18. 18.
    Li N, Ren L (2009) J Contam Hydrol 108:134CrossRefGoogle Scholar
  19. 19.
    Mao M, Ren L (2004) Ground Water 42:500CrossRefGoogle Scholar
  20. 20.
    Pot V, Genty A (2007) Adv Water Resour 30:273CrossRefGoogle Scholar
  21. 21.
    Wang JS, Zuo R, Teng YU, Hu QH, Sun ZJ (2010) J Radioanal Nucl Chem 283:319CrossRefGoogle Scholar
  22. 22.
    Venkatesan KA, Sukumaran V, Antony MP, Srinivasan TG (2009) J Radioanal Nucl Chem 280:129CrossRefGoogle Scholar
  23. 23.
    Weerasooriya R, Dharmasena B, Aluthpatabendi D (2000) Colloids Surf A 170:65CrossRefGoogle Scholar
  24. 24.
    Fiol N, Villaescusa I, Martínez M, Miralles N (2006) Sep Purif Tech 50:132CrossRefGoogle Scholar
  25. 25.
    Wang YL, Lieberman M (2003) Langmuir 19:1159CrossRefGoogle Scholar
  26. 26.
    Ou J, Perot B, Rothstein JP (2004) Phys Fluids 16:4635CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  1. 1.Institute of Environmental ScienceTaiyuan University of Science and TechnologyTaiyuanPeople’s Republic of China

Personalised recommendations