Advertisement

Adsorption of Eu(III) from aqueous solution using mesoporous molecular sieve

  • Liming Zuo
  • Shaoming Yu
  • Hai Zhou
  • Jun Jiang
  • Xue Tian
Article

Abstract

The adsorption behavior of Eu(III) from aqueous solution to mesoporous molecular sieves (Al-MCM-41) is investigated as a function of contact time, solid content, ionic strength, pH, foreign ions and temperature by using batch technique. The experimental results show that Eu(III) adsorption is strongly dependent on pH values, but independent of ionic strength and foreign cations under our experimental conditions. The kinetic process is described by a pseudo-second-order rate model very well. The adsorption isotherms are simulated by Langmuir model very well. The thermodynamic parameters (∆G°, ∆S°, ∆H°) are calculated from the temperature dependent adsorption isotherms at 293, 313 and 333 K, respectively, and the results suggest that the adsorption of Eu(III) on Al-MCM-41 is a spontaneous and endothermic process. Desorption studies indicate that the adsorbed Eu(III) is very difficult to be desorbed from the solid surface. Al-MCM-41 is a suitable material for the preconcentration and solidification of Eu(III) from large volumes of aqueous solutions.

Keywords

Adsorption Desorption Eu(III) Mesoporous molecular sieves 

Notes

Acknowledgment

Financial support from National Natural Science Foundation of China (20971033) is acknowledged.

References

  1. 1.
    Zuo LM, Yu SM, Zhou H, Tian X, Jiang J (2010) J Radioanal Nucl Chem. doi: 10.1007/s10967-010-0930-9
  2. 2.
    Wang XK, Zhou X, Du JZ, Hu WP, Chen CL, Chen YX (2006) Surf Sci 600:478–482CrossRefGoogle Scholar
  3. 3.
    Talip Z, Eral M, Hiçsönmez Ü (2009) J Environ Radioact 100:139–143CrossRefGoogle Scholar
  4. 4.
    Tan XL, Fang M, Li JX, Lu Y, Wang XK (2009) J Hazard Mater 168:458–465CrossRefGoogle Scholar
  5. 5.
    Tan XL, Fan QH, Wang XK, Grambow B (2009) Environ Sci Technol 43:3115–3121CrossRefGoogle Scholar
  6. 6.
    Tan XL, Fang M, Wang XK (2010) Molecules 15:8431–8468CrossRefGoogle Scholar
  7. 7.
    Tan XL, Wang XK, Geckeis H, Rabung T (2008) Environ Sci Technol 42:6532–6537CrossRefGoogle Scholar
  8. 8.
    Guo ZJ, Xu J, Shi KL, Tang YQ, Wu WS, Tao ZY (2009) Colloids Surf A 339:126–133CrossRefGoogle Scholar
  9. 9.
    Chen CL, Hu J, Xu D, Tan XL, Meng YD, Wang XK (2008) J Colloid Interface Sci 323:33–41CrossRefGoogle Scholar
  10. 10.
    Bradbury MH, Baeyens B (2005) Geochim Cosmochim Acta 69:4187–4197CrossRefGoogle Scholar
  11. 11.
    Schlegel ML, Pointeau I, Coreau N, Reiller P (2004) Environ Sci Technol 38:4423–4431CrossRefGoogle Scholar
  12. 12.
    Shao DD, Fan QH, Li JX, Niu ZW, Wu WS, Chen YX, Wang XK (2009) Microporous Mesoporous Mater 123:1–9CrossRefGoogle Scholar
  13. 13.
    Fan QH, Shao DD, Hu J, Chen CL, Wu WS, Wang XK (2009) Radiochim. Acta 97:141–148Google Scholar
  14. 14.
    Bauer A, Rabung T, Claret F, Schäfer T, Buckau G, Franghänel T (2005) Appl Clay Sci 30:1–6CrossRefGoogle Scholar
  15. 15.
    Sheng GD, Shao DD, Ren XM, Wang XQ, Li JX, Chen YX, Wang XK (2010) J Hazard Mater 178:505–516CrossRefGoogle Scholar
  16. 16.
    Anirudhan TS, Suchithra PS, Rijith S (2008) Colloids Surf A 326:147–156CrossRefGoogle Scholar
  17. 17.
    Sheng GD, Hu J, Jin H, Yang ST, Ren XM, Li JX, Chen YX, Wang XK (2010) Radiochim Acta 98:291–299CrossRefGoogle Scholar
  18. 18.
    Ren XM, Wang SW, Yang ST, Li JX (2010) J Radioanal Nucl Chem 283:253–259CrossRefGoogle Scholar
  19. 19.
    Anirudhan TS, Bringle CD, Rijith S (2010) J Environ Radioact 101:267–276CrossRefGoogle Scholar
  20. 20.
    Hu J, Xie Z, He B, Sheng GD, Chen CL, Li JX, Chen YX, Wang XK (2010) Sci China B 53:1420–1428CrossRefGoogle Scholar
  21. 21.
    Wu JJ, Li B, Liao JL, Feng Y, Zhang D, Zhao J, Wen W, Yang YY, Liu N (2009) J Environ Radioact 100:914–920CrossRefGoogle Scholar
  22. 22.
    Fan QH, Tan XL, Li JX, Wang XK, Wu WS, Montavon G (2009) Environ Sci Technol 43:5776–5782CrossRefGoogle Scholar
  23. 23.
    Chen CL, Wang XK, Nagatsu M (2009) Environ Sci Technol 43:2362–2367CrossRefGoogle Scholar
  24. 24.
    Sheng GD, Shao DD, Fan QH, Xu D, Chen YX, Wang XK (2009) Radiochim Acta 97:621–630CrossRefGoogle Scholar
  25. 25.
    Wang XK, Chen CL, Hu WP, Ding AP, Xu D, Zhou X (2005) Environ Sci Technol 39:2856–2860Google Scholar
  26. 26.
    Du EL, Yu SM, Zuo LM, Zhang JS, Huang XQ, Wang Y (2010) Appl Clay Sci. doi: 10.1016/j.clay.2010.11.009
  27. 27.
    Xu D, Zhou X, Wang XK (2008) Appl Clay Sci 39:133–141CrossRefGoogle Scholar
  28. 28.
    Choppin GR (2007) J Radioanal Nucl Chem 2763:695–703CrossRefGoogle Scholar
  29. 29.
    Hu J, Xu D, Chen L, Wang XK (2009) J Radioanal Nucl Chem 279:701–708CrossRefGoogle Scholar
  30. 30.
    Shao DD, Jiang ZQ, Wang XK (2010) Plasma Process Polym 7:552–560CrossRefGoogle Scholar
  31. 31.
    Chang PP, Yu SM, Chen T, Ren AP, Chen CL, Wang X (2007) J Radioanal Nucl Chem 274:153–160CrossRefGoogle Scholar
  32. 32.
    Yu SM, Li XG, Ren AP, Shao DD, Chen CL, Wang X (2006) J Radioanal Nucl Chem 268:387–392CrossRefGoogle Scholar
  33. 33.
    Zhang ML, Ren AP, Shao DD, Wang X (2006) J Radioanal Nucl Chem 268:33–36CrossRefGoogle Scholar
  34. 34.
    Zhang H, Yu XJ, Chen L, Geng JQ (2010) J Radioanal Nucl Chem 286:249–258CrossRefGoogle Scholar
  35. 35.
    Yu SM, Ren AP, Cheng J, Song XP, Chen CL, Wang X (2007) J Radioanal Nucl Chem 273:129–133CrossRefGoogle Scholar
  36. 36.
    Takahashi Y, Kimura T, Kato Y, Minai Y (1999) Environ Sci Technol 33:4016–4021CrossRefGoogle Scholar
  37. 37.
    Zhao DL, Yang X, Zhang H, Chen CL, Wang XK (2010) Chem Eng J 164:49–55CrossRefGoogle Scholar
  38. 38.
    Shao DD, Jiang ZQ, Wang XK, Li JX, Meng YD (2009) J Phys Chem B 113:860–864CrossRefGoogle Scholar
  39. 39.
    Hu J, Chen CL, Sheng GD, Li JX, Chen YX, Wang XK (2010) Radiochim Acta 98:421–429CrossRefGoogle Scholar
  40. 40.
    Chen CL, Wang XK (2007) Appl Radiat Isot 65:155–163CrossRefGoogle Scholar
  41. 41.
    Bradbury MH, Baeyens B (2002) Cosmochim Acta 66:2325–2334CrossRefGoogle Scholar
  42. 42.
    Yang ST, Li JX, Shao DD, Hu J, Wang XK (2009) J Hazard Mater 166:109–116CrossRefGoogle Scholar
  43. 43.
    Sheng GD, Hu J, Wang XK (2008) Appl Radiat Isot 66:1313–1320CrossRefGoogle Scholar
  44. 44.
    Sheng GD, Li JX, Shao DD, Hu J, Chen CL, Chen YX, Wang XK (2010) J Hazard Mater 178:333–340CrossRefGoogle Scholar
  45. 45.
    Chen CL, Xu D, Tan XL, Wang X (2007) J Radioanal Nucl Chem 273:227–233CrossRefGoogle Scholar
  46. 46.
    Wang SW, Dong YH, He ML, Chen L, Yu XJ (2009) Appl Clay Sci 43:164–171CrossRefGoogle Scholar
  47. 47.
    Tan XL, Hu J, Zhou X, Yu SM, Wang XK (2008) Radiochim Acta 96:487–495CrossRefGoogle Scholar
  48. 48.
    Tan XL, Chen CL, Yu SM, Wang XK (2008) Appl Geochem 23:2767–2777CrossRefGoogle Scholar
  49. 49.
    Tan XL, Wang XK, Fang M, Chen CL (2007) Colloids Surf A 296:109–116CrossRefGoogle Scholar
  50. 50.
    Zhao DL, Chen CL (2006) J Radioanal Nucl Chem 270:445–452CrossRefGoogle Scholar
  51. 51.
    Zhao GX, Zhang HX, Fan QH, Ren XM, Li JX, Chen YX, Wang XK (2010) J Hazard Mater 173:661–668CrossRefGoogle Scholar
  52. 52.
    Shao DD, Sheng GD, Chen CL, Wang XK, Nagatsu M (2010) Chemosphere 79:679–685CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Liming Zuo
    • 1
  • Shaoming Yu
    • 1
  • Hai Zhou
    • 1
  • Jun Jiang
    • 1
  • Xue Tian
    • 1
  1. 1.School of Chemical EngineeringHefei University of TechnologyHefeiPeople’s Republic of China

Personalised recommendations