Determination of Pu, Am, U and Cs in large soil samples in the vicinity of the USDOE Waste Isolation Pilot Plant



The determination of actinides in environmental soil and sediment samples are very important for environmental monitoring. A rapid actinide separation method has been developed and implemented that allows measurement of U, Pu and Am isotopes in large soil samples (10–15 g) with high chemical yields and effective removal of matrix interferences. The radiochemical procedures involve the total dissolution of soil samples, separation on anion-exchange resin, and separation and purification by extraction chromatography, e.g., UTEVA, TEVA, and TRU with measurements of radionuclides by alpha-spectrometry. The validation of the method is performed through the analysis of reference materials or by participating in laboratory intercomparison programs.


Large soil Actinide UTEVA TEVA TRU 



This research was supported by a grant from the US Department of Energy, Carlsbad Field Office.


  1. 1.
    Faller SH (1994) Residual soil radioactivity at the Gnome Test Site in Eddy County, New Mexico, Report No. EPA 600/R-94/117, July 1994, WashingtonGoogle Scholar
  2. 2.
    Kenney JW, Downes PS, Gray DH, Ballard SC (1995) Radionuclides baseline in soil near project Gnome and the Waste Isolation Pilot Plant, Carlsbad, New Mexico, Environmental Evaluation GroupGoogle Scholar
  3. 3.
    Chugg JC, Anderson GW, King DL, Jones LH (1971) Soil Survey of Eddy County, New Mexico, Washington, DC: US Department of AgricultureGoogle Scholar
  4. 4.
    Sill CW (1974) Anal Chem 46:1426–1431CrossRefGoogle Scholar
  5. 5.
    Hindman FD (1983) Anal Chem 55:361–372CrossRefGoogle Scholar
  6. 6.
    Alberts JJ, Bobula CM, Farrar DT (1980) J Environ Qual 9:592–596CrossRefGoogle Scholar
  7. 7.
    Hodge V, Smith C, Whiting J (1996) Chemosphere 32:2067–2075CrossRefGoogle Scholar
  8. 8.
    Carlsbad Environmental Monitoring and Research Center, Annual Report (2006) New Mexico State University, Carlsbad, NM
  9. 9.
    UNSCEAR (1969) United Nation scientific committee on the effects of atomic radiation, 24th Session, Suppl No. 13 (A/7613), New YorkGoogle Scholar
  10. 10.
    Hardy E, Alexander T (1962) Science 136:881–882CrossRefGoogle Scholar
  11. 11.
    Beck HL, Bennet GB (2002) Health Phys 82:591–608CrossRefGoogle Scholar
  12. 12.
    Papastefanou C, Ioannidou A, Stoulos S, Manolopoulou M (1995) Sci total Environ 170:151–156CrossRefGoogle Scholar
  13. 13.
    Koide M, Michel R, Goldberg ED, Herron MM, Langway MM Jr (1982) Nature 296:544–547CrossRefGoogle Scholar
  14. 14.
    Krey PW, Beck HL (1981) The distribution throughout Utah of 137Cs and 239+240Pu from Nevada Test Site Detonation. US Department of energy, Environment Measurements Laboratory, EML-372Google Scholar
  15. 15.
    Mitchell P, Vintró L, Dahlgaard H, Gascó C, Sánchez-Cabeza JA (1997) Sci Total Environ 202:147–153CrossRefGoogle Scholar
  16. 16.
    Poet SE, Martell EA (1972) Health Phys 23:537–548CrossRefGoogle Scholar
  17. 17.
    Nyhan JW, Miera FR Jr, Neher RE (1976) J Environ Qual 5:431–437CrossRefGoogle Scholar
  18. 18.
    Carlsbad Environmental Monitoring and Research Center, Annual Report (1998) New Mexico State University, Carlsbad, NM
  19. 19.
    Turner M, Rudin M, Cizdziel J, Hodge V (2003) Environ Pollut 125:193–203CrossRefGoogle Scholar
  20. 20.
    Jia G, Testa C, Desideri D, Guerra F, Meli MA, Roselli C, Belli ME (1999) Health Phys 77:52–61CrossRefGoogle Scholar
  21. 21.
    Price RR (1991) Radiochim Acta 54:145–147Google Scholar
  22. 22.
    Baeza A, Guillen J, Espinosa A, Aragon A, Gutierrez J (2005) Radioprotection Suppl. 40:S61–S65CrossRefGoogle Scholar
  23. 23.
    Rollin S, Sahil H, Holzer T, Astner M, Burger M (2009) Appl Rad Isotope 67:821–827CrossRefGoogle Scholar
  24. 24.
    Kim KG, Burnett WC, Horwitz EP (2000) Anal Chem 72:4882–4887CrossRefGoogle Scholar
  25. 25.
    Vajda N, Törvényi A, Kis-Benedek G, Kim CK (2009) Radiochim Acta 97:9–16CrossRefGoogle Scholar
  26. 26.
    Muramatsu Y, Uchida S, Tagami K, Yoshida S, Fujikawa T (1999) t. J Anal At Spectrom 14:859–867CrossRefGoogle Scholar
  27. 27.
    Maxwell SL, Culligan BK (2006) J Radioanal Nucl Chem 270:699–704CrossRefGoogle Scholar
  28. 28.
    Ayranov M, Kraehenbuehl U, Sahli H, Röllin S, Burger M (2005) Radiochim Acta 93:249–257CrossRefGoogle Scholar
  29. 29.
    Ohtsuka Y, Takaku Y, Nishimura K, Kimura J, Hisamatsu S, Inaba J (2006) Anal Sci 22:309–311CrossRefGoogle Scholar
  30. 30.
    Guogang J, Testa C, Desideri D, Guerra F, Roselli C (1998) J Radioanal Nucl Chem 230:21–27CrossRefGoogle Scholar
  31. 31.
    Moreno J, Vajda N, Danesi PR, LaRosa JJ, Zeiller E, Sinojmeri M (1997) J Radioanal Nucl Chem 226:279–284CrossRefGoogle Scholar
  32. 32.
    Kim CS, Kim CK, Lee KJ (2004) J Anal At Spectrom 19:743–750CrossRefGoogle Scholar
  33. 33.
    Nygren U, Rodushkin I, Nilsson C, Baxter DC (2003) J Anal At Spectrom 18:1426–1434CrossRefGoogle Scholar
  34. 34.
    Varga Z, Surányi G, Vajda N, Stefánka Z (2007) J Radioanal Nucl Chem 274:87–94CrossRefGoogle Scholar
  35. 35.
    Varga Z, Stefanka Z, Suranyi G, Vajda N (2007) Radiochim Acta 95:81–87CrossRefGoogle Scholar
  36. 36.
    Maxwell SL (2008) J Radioanal Nucl Chem 275:395–402CrossRefGoogle Scholar
  37. 37.
    Michel H, Levent D, Barci V, Barci-Funel G, Hurel C (2008) Talanta 74:1527–1533CrossRefGoogle Scholar
  38. 38.
    Holgye Z, Schlesingerova E, Tecl J, Filgas R (2004) J Environ Radioact 71:115–125CrossRefGoogle Scholar
  39. 39.
    Aliabadi M, Amidi J, Alirezazadeh N, Attarilar A (2005) J Environ Radioact 79:309–314CrossRefGoogle Scholar
  40. 40.
    Tavcar P, Benedik L (2005) Radiochim Acta 93:623–625CrossRefGoogle Scholar
  41. 41.
    Boulyga SF, Zoriy M, Ketterer ME, Becker JS (2003) J Environ Monit 5:661–666CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  1. 1.Carlsbad Environmental Monitoring and Research CenterCarlsbadUSA

Personalised recommendations