Temporal variation of 7Be fallout and its inventory in purple soil in the Three Gorges Reservoir region, China

  • Zhonglin Shi
  • Anbang Wen
  • Dongchun Yan
  • Xinbao Zhang
  • Li Ju


The deposition flux of 7Be was measured in the range from 0.4 to 5.2 Bq m−2 d−1, with a mean value of 2.6 Bq m−2 d−1, during the period of May 31, 2009–May 31, 2010 in the Three Gorges Reservoir region, China. The low annual deposition flux of 7Be was probably due to the adsorption of 7Be within high altitude clouds and the Qinling-Daba Mountain’s barrier and blocking effects on the cold air during winter months. There was a seasonal trend for 7Be deposition, showing a spring maximum and winter minimum, which may be attributed to the seasonal folding of tropopause in spring and little rainfall amount in winter. A strong positive correlation (R 2 = 0.67) between 7Be deposition flux and rainfall was observed. The depth distribution of 7Be in undisturbed purple soil profiles suggested that the nuclide was mainly distributed within the top 20.0 kg m−2 (~1.5 cm) of soil in depth and the maximum concentration occurred at a depth of 3.0 kg m−2 (~0.2 cm), then the concentration declined quickly and exponentially with depth. The seasonal inventories of 7Be in soils were consistent with the values calculated from the atmospheric fluxes, which shows a great potential for using 7Be as a tracer to assess soil redistribution in purple soil areas of China.


7Be Deposition flux Purple soil Erosion Three Gorges Reservoir region China 



The work described in this contribution was supported by the National Key Technology R&D Program (Grant No. 2008BAD98B01), the Important National Science & Technology Specific Projects (Grant No. 2009ZX07104-002-06) and the Action Plan for the Development of Western China, Chinese Academy of Sciences (Grant No. KZCX2-XB2-07). Thanks are extended to the anonymous reviewers and the editor, whose comments and suggestions have improved the original manuscript.


  1. 1.
    Zapata F (2002) Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides. Kluwer Academic Publishers, DordrechtGoogle Scholar
  2. 2.
    Mabit L, Benmansour M, Walling DE (2008) J Environ Radioact 99:1799–1807CrossRefGoogle Scholar
  3. 3.
    Olsen CR, Larsen IL, Lowry PD, Cutshall NH, Todd JF, Wong GTF, Casey WH (1985) J Geophys Res 90(D6):10487–10495CrossRefGoogle Scholar
  4. 4.
    Feely HW, Larsen RJ, Sanderson CG (1989) J Environ Radioact 9(3):223–249CrossRefGoogle Scholar
  5. 5.
    Olsen CR, Larsen IL, Lowry PD, Cutshall NH, Nichols MM (1986) J Geophys Res 91(C1):896–908CrossRefGoogle Scholar
  6. 6.
    Kaste JM, Norton SA, Hess CT (2002) In: Edward SG (ed) Beryllium: mineralogy, petrology and geochemistry. Rev Mineral Geochem 50:271–289Google Scholar
  7. 7.
    Blake WH, Walling DE, He Q (1999) Appl Radiat Isot 51(5):599–605CrossRefGoogle Scholar
  8. 8.
    Sepulveda A, Schuller P, Walling DE, Castillo A (2008) J Environ Radioact 99(1):35–49CrossRefGoogle Scholar
  9. 9.
    Wallbrink PJ, Murray AS (1996) Water Resour Res 32(2):467–476CrossRefGoogle Scholar
  10. 10.
    Walling DE, He Q, Blake W (1999) Water Resour Res 35(12):3865–3874CrossRefGoogle Scholar
  11. 11.
    Walling DE, Schuller P, Zhang Y, Iroumé A (2009) Water Resour Res 45 (W02418). doi: 10.1029/2008WR007143
  12. 12.
    Chang YZ, Wang XH, Wang SL, Wang J (2008) Nucl Technol 31(10):796–800 (in Chinese)Google Scholar
  13. 13.
    Jiang RR (1994) Nucl Technol 17(3):172–175 (in Chinese)Google Scholar
  14. 14.
    Wan GJ, Zheng XD, Lee HN, Wang SL, Wan EY, Yang W, Tang J, Wu FC, Wang CS, Huang RG (2006) Geochimica 35(3):221–226 (in Chinese)Google Scholar
  15. 15.
    Zheng XD, Wan GJ, Tang J, Zhang XC, Yang W, Lee HN, Wang CS (2005) Chin Sci Bull 50(2):167–171Google Scholar
  16. 16.
    Du JZ, Zhang J, Zhang J, Wu YF (2008) Atmos Environ 42:5101–5109CrossRefGoogle Scholar
  17. 17.
    Jia CX, Liu GS, Yang WF (2003) J Xiamen Univ (Nat Sci) 42(3):352–357 (in Chinese)Google Scholar
  18. 18.
    Yi Y, Zhou P, Liu GS (2007) J Radioanal Nucl Chem 273(1):157–162CrossRefGoogle Scholar
  19. 19.
    Bai ZG, Wan GJ, Wang CS, Wan X, Huang RG (1996) Prog Nat Sci 6(6):700–710Google Scholar
  20. 20.
    Bai ZG, Wan GJ, Huang RG, Liu T (2002) Catena 49:253–270CrossRefGoogle Scholar
  21. 21.
    Yang MY, Walling DE, Tian JL, Liu PL (2006) Soil Sci Soc Am J 70:1579–1590CrossRefGoogle Scholar
  22. 22.
    Zhang XB, Feng MY, Zhang YY, Zou X, Wen AB, Bai LX (2004) Nucl Technol 27(11):873–876 (in Chinese)Google Scholar
  23. 23.
    Narazaki Y, Fujitaka K, Igarashi S, Fujinami N (2003) J Radioanal Nucl Chem 256(3):489–496CrossRefGoogle Scholar
  24. 24.
    Hedfors J, Aldahan A, Kulan A, Possnert G, Karlsson KG, Vintersved I (2006) J Geophys Res 111 (D02208). doi: 10.1029/2005JD005903
  25. 25.
    Hedfors J, Aldahan A, Possnert G (2010) Nucl Instrum Method Phys Res B 268:1129–1134CrossRefGoogle Scholar
  26. 26.
    Baskaran M, Coleman CH, Santschi PH (1993) J Geophys Res 98(D11):20555–20571CrossRefGoogle Scholar
  27. 27.
    Sugihara S, Efrizal, Osaki S, Momoshima N, Maeda Y (2008) J Radioanal Nucl Chem 278(2):419–422CrossRefGoogle Scholar
  28. 28.
    Cho YH, Lee W, Chung KH, Choi GS, Lee CW (2007) J Radioanal Nucl Chem 274(3):531–538CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Zhonglin Shi
    • 1
    • 2
  • Anbang Wen
    • 1
  • Dongchun Yan
    • 1
  • Xinbao Zhang
    • 1
  • Li Ju
    • 1
    • 2
  1. 1.Institute of Mountain Hazards and EnvironmentChinese Academy of SciencesChengduChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations