Radiocharacterization of the 99mTc–rufloxacin complex and biological evaluation in Staphylococcus aureus infected rat model

  • Syed Qaiser Shah
  • Muhammad Rafiullah Khan


99mTc–rufloxacin (99mTc–RUN) complex was prepared by reaction of different amounts of reduced sodium pertechnetate with different amount of Rufloxacin (RUN) antibiotic for the in vivo scintigraphic localization of the Staphylococcus aureus (S. aureus) infectious foci in Male Wister Rats (MWR) model. The 99mTc–RUN complex was radiochemically and biologically characterized in terms of radiochemical stability in saline, serum, in vitro binding with S. aureus and biodistribution in artificially infected with S. aureus MWR. The 99mTc–RUN complex showed stability more than 90% up to 240 min in normal saline with a maximum stability value of 98.10 ± 0.18% at 30 min after reconstitution. At 37 °C the complex showed in vitro permanence in serum up to 16 h with 13.90% side products during incubation. The 99mTc–RUN complex showed saturated in vitro binding with S. aureus at different intervals with a maximum uptake value of 71.50%. Infected to normal muscle, infected to inflamed and inflamed to normal muscles ratios were approximately 6.04, 4.31 and 1.40. Based on the stability of the complex in saline, serum, in vitro binding with S. aureus and biodistribution results, the 99mTc–RUN complex is recommended for in vivo scintigraphic localization of the S. aureus in vivo infectious foci in human.


Rufloxacin 99mTc Biodistribution Staphylococcus aureus Infection 


  1. 1.
    Gallagher H, Ramsay SC, Barnes J, Maggs J, Cassidy N, Ketheesan N (2006) Neutrophil labeling with [99mTc]-technetium stannous colloid is complement receptor 3-mediated and increases the neutrophil priming response to lipopolysaccharide. Nucl Med Biol 33:433CrossRefGoogle Scholar
  2. 2.
    Stumpe KDM, Dazzi H, Schaffner A, Schulthess GK (2000) Infection imaging using whole-body FDG-PET. Eur J Nucl Med 27:822CrossRefGoogle Scholar
  3. 3.
    Chattopadhyay S, Das SS, Chandra S, De K, Mishra M, Sarkar BR, Sinha S, Ganguly S (2010) Synthesis and evaluation of 99mTc–moxifloxacin, a potential infection specific imaging agent. Appl Radiat Isot 68:314CrossRefGoogle Scholar
  4. 4.
    Motaleb MA (2007) Preparation of 99mTc–cefoperazone complex, a novel agent for detecting sites of infection. J Radioanal Nucl Chem 272:167CrossRefGoogle Scholar
  5. 5.
    Motaleb MA (2007) Preparation and biodistribution of 99mTc–lomefloxacin and 99mTc–olfloxacin complex. J Radioanal Nucl Chem 272:95CrossRefGoogle Scholar
  6. 6.
    Zhang J, Guo H, Zhang S, Lin Y, Wang X (2008) Synthesis and biodistribution of a novel 99mTcN complex of ciprofloxacin dithiocarbamate as a potential agent for infection imaging. Bioorg Med Chem Lett 18:51Google Scholar
  7. 7.
    Roohi S, Mushtaq A, Jehangir M, Ashfaq MS (2006) Synthesis, quality control and biodistribution of 99mTc–kanamycin. J Radioanal Nucl Chem 267:561CrossRefGoogle Scholar
  8. 8.
    Oh SJ, Ryu J, Shin JW, Yoon EJ, Ha H, Cheon JH, Lee HK (2002) Synthesis of 99mTc–ciprofloxacin by different methods and its biodistribution. Appl Radiat Isot 57:193CrossRefGoogle Scholar
  9. 9.
    El-Gany EA, El-Kolaly MT, Amine AM, El-Sayed AS, Abdel-Gelil F (2005) Synthesis of 99mTc–pefloxacin: a new targeting agent for infectious foci. J Radioanal Nucl Chem 266:131CrossRefGoogle Scholar
  10. 10.
    Motaleb MA (2009) Preparation, quality control and stability of 99mTc–sparafloxacin complex, a novel agent for detecting sites of infection. J Label Compd Radiopharm 52:415CrossRefGoogle Scholar
  11. 11.
    Xia J, Wang Y, Yu J, Li S, Tang L, Zheng M, Liu X, Li G, Cheng D, Liang S, Yin D (2008) Synthesis, in vitro and in vivo behavior of 188Re(I)–tricarbonyl complexes for the future functionalization of biomolecules. J Radioanal Nucl Chem 275:325CrossRefGoogle Scholar
  12. 12.
    Zhang J, Wang X, Jin C (2007) Synthesis and biodistribution of the 99mTc(CO)3–DEDT complex as a potential new radiopharmaceutical for brain imaging. J Radioanal Nucl Chem 272:91CrossRefGoogle Scholar
  13. 13.
    Djokic DD, Jankovic DL, Stamenkovic LL, Pirmettis I (2004) Chemical and biological evaluation of 99mTc (CO)3 and 99mTc complexes of some IDA derivatives. J Radioanal Nucl Chem 260:471CrossRefGoogle Scholar
  14. 14.
    Xia J, Long S, Yu J, Wang Y, Cao Z (2009) Pyridyl derivatives provide new pathways for labeling protein with fac-[188Re(CO)3(H2O)3]+. J Radioanal Nucl Chem 281:493CrossRefGoogle Scholar
  15. 15.
    Zhang JB, Wang XB, Jin C (2006) Synthesis of 99mTc(CO)3-NOET via [99mTc(OH2)3(CO)3]+ precursor and comparative biological studies with 99mTcN-NOET. J Radioanal Nucl Chem 269:227CrossRefGoogle Scholar
  16. 16.
    Qaiser SS, Khan AU, Khan MR (2010) Synthesis, biodistribution and evaluation of 99mTc–sitafloxacin kit: a novel infection imaging agent. J Radioanal Nucl Chem 284:189CrossRefGoogle Scholar
  17. 17.
    Shah SQ, Khan AU, Khan MR (2010) Radiosynthesis of 99mTc–nitrifuratonin a novel radiotracer for in vivo imaging of Escherichia coli infection. J Radioanal Nucl Chem. doi: 10.1007/s10967-010-0697-z
  18. 18.
    Shah SQ, Khan AU, Khan MR (2010) Radiosynthesis and biodistribution of 99mTc–rifampicin: a novel radiotracer for in vivo infection imaging. Appl Radiat Isot 68:2255CrossRefGoogle Scholar
  19. 19.
    Shah SQ, Khan AU, Khan MR (2010) 99mTc–novobiocin: a novel radiotracer for infection imaging. Radiochim Acta (in press)Google Scholar
  20. 20.
    Shah SQ, Khan AU, Khan MR (2010) Radiosynthesis, biodistribution and scintigraphy of the 99mTc–teicoplanin complex in artificially infected animal models. J Label Compd Radiopharm. doi: 10.1002/jlcr.1834
  21. 21.
    Shah SQ, Khan AU, Khan MR (2010) Radiosynthesis and biological evaluation of 99mTcN–sitafloxacin dithiocarbamate as a potential radiotracer for Staphylococcus aureus infection. J Radioanal Nucl Chem. doi: 10.1007/s10967-010-0833-9
  22. 22.
    Shah SQ, Khan AU, Khan MR (2010) Radiosynthesis and biodistribution of 99mTcN–garenoxacin dithiocarbamate complex a potential infection imaging agent. J Radioanal Nucl Chem. doi: 10.1007/s10967-010-0871-3
  23. 23.
    Shah SQ, Khan AU, Khan MR (2010) Radiosynthesis and biological evolution of 99mTc(CO)3–sitafloxacin dithiocarbamate complex: a promising Staphylococcus aureus infection radiotracer. J Radioanal Nucl Chem. doi: 10.1007/s10967-010-0880-2
  24. 24.
    Shah SQ, Khan AU, Khan MR (2010) 99mTc(CO)3–Garenoxacin dithiocarbamate synthesis and biological evolution in rats infected with multiresistant Staphylococcus aureus and penicillin-resistant Streptococci. J Radioanal Nucl Chem. doi: 10.1007/s10967-010-0892-y
  25. 25.
    Imbimbo BP, Klietmann W, Broccali GP, Cesana M, Aarons L (1997) Population pharmacokinetics of rufloxacin in patients with acute exacerbations of chronic bronchitis. Eur J Pharm Sci 5:37CrossRefGoogle Scholar
  26. 26.
    Wang X, Zhao H, Nie L, Jin L, Zhang Z (2001) Europium sensitized chemiluminescence determination of rufloxacin. Anal Chim Acta 445:169CrossRefGoogle Scholar
  27. 27.
    Welling MM, Paulusma-Annema A, Batler HS, Pauwels EKJ, Nibbering PH (2000) Technetium-99m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammations. Eur J Nucl Med 27:292CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.Nuclear Medicine Research Laboratory (NMRL)University of PeshawarPeshawarPakistan
  2. 2.Phyotopharmaceutical and Neutraceuticals Research Laboratory (PNRL)University of PeshawarPeshawarPakistan

Personalised recommendations