Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 287, Issue 2, pp 383–391 | Cite as

Concentration of elements in suspended matter discharges to Lerma River, Mexico

  • P. Avila-Pérez
  • G. Zarazúa
  • L. Carapia
  • S. Tejeda
  • I. Barceló-Quintal
  • T. Martinez
Article

Abstract

The S, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn and Pb concentration and the elemental composition of particles in suspended matter from principal discharges to Lerma River, have been evaluated. The elemental concentration in suspended matter has been obtained by Energy Dispersive X-Ray Fluorescence Spectrometry. The elemental composition of particles has been obtained by means of Energy Dispersive X-Ray Spectrometry (EDS). The results show that K, Ca, Ti, Mn and Fe are mainly from natural origin in the Upper Course of the Lerma River (UCLR), where the principal contributions probably come from dragging of soils and sediments in the rainy season and Cr, Cu, Zn and Pb are mainly from anthropogenic origin where the principal contributions come from urban and industrial untreated discharge. The application of Energy Dispersive X-Ray Spectrometry plus Scanning Electron Microscopy is useful in the characterization of suspended matter in natural, anthropogenic and mixed water discharges.

Keywords

Suspended matter Energy dispersive X-ray fluorescence spectrometry Water pollution Heavy metals 

Notes

Acknowledgments

Authors acknowledge the support provided by the COMECYT-CONACYT, EDOMEX-2005-CO1-13 and the International Atomic Energy Agency through their technical cooperation programs within the project RLA/1/010 “Improved Regional Management of Pollution in Surface Waters Contaminated with Heavy Metals” (ARCAL).

References

  1. 1.
    Mestre RJE (1997) Case study VIII – Lerma – Chapala basin, Mexico. In: Helmer R, Hespanhol I (ed) Water pollution control—a guide to the use of water quality management principles. WHO/UNEP, LondonGoogle Scholar
  2. 2.
    Esteller MV, Diaz-Delgado C (2002) Environ Manag 29:266CrossRefGoogle Scholar
  3. 3.
    Owens J, Niemeyer E (2006) Environ Pollut 140:506CrossRefGoogle Scholar
  4. 4.
    Gagneten A, Gervasio S, Paggi J (2007) Water Air Soil Pollut 178:335CrossRefGoogle Scholar
  5. 5.
    Charkhabi A, Sakizadeh M, Rafiee G (2005) Environ Sci Pollut Res 12:264CrossRefGoogle Scholar
  6. 6.
    Gallo M, Trento A, Alvarez A, Beldomenico H, Campagnoli D (2006) Water Air Soil Pollut 174:367CrossRefGoogle Scholar
  7. 7.
    Hoang T, Nguyen V, Tu L (2007) Water Air Soil Pollut 182:73CrossRefGoogle Scholar
  8. 8.
    Hansen A, Leon A, Inclan L (1995) Hydr Eng Mex 3:55Google Scholar
  9. 9.
    Dekov V, Komy Z, Araujo F, Van Put A, Van Grieken R (1997) Sci Total Environ 201:195CrossRefGoogle Scholar
  10. 10.
    Kolowski M, Laquintinie M (2006) Water Air Soil Pollut 169:167CrossRefGoogle Scholar
  11. 11.
    Renoldi M, Camusso M, Tartaru G (1996) Water Air Soil Pollut 83:99Google Scholar
  12. 12.
    Pelig-Ba K, Parker A, Price M (2004) Water Air Soil Pollut 153:69CrossRefGoogle Scholar
  13. 13.
    Hallberg M, Renman G, Lundbom T (2007) Water Air Soil Pollut 181:183CrossRefGoogle Scholar
  14. 14.
    Calmano W, Lieser KH (1981) J Radioanal Nucl Chem 63:335CrossRefGoogle Scholar
  15. 15.
    Habib S, Minski MJ (1981) J Radioanal Nucl Chem 63:379CrossRefGoogle Scholar
  16. 16.
    Pepelnik R, Fanger HU, Michaelis W, Anders B (1982) J Radioanal Nucl Chem 72:393CrossRefGoogle Scholar
  17. 17.
    Boniforti R, Madaro M, Moauro A (1984) J Radioanal Nucl Chem 84:441CrossRefGoogle Scholar
  18. 18.
    Niedergesass R, Racky B, Schnier C (1987) J Radioanal Nucl Chem 114:57CrossRefGoogle Scholar
  19. 19.
    Kolesov GM, Anikiev VV (1997) J Radioanal Nucl Chem 216:299CrossRefGoogle Scholar
  20. 20.
    Lloyd A, Parry SJ, Lynn NM, Giles IS (2005) J Radioanal Nucl Chem 264:83CrossRefGoogle Scholar
  21. 21.
    Costa ACM, Castro CRF, Anjos MJ, Lopes RT (2006) J Radioanal Nucl Chem 269:703CrossRefGoogle Scholar
  22. 22.
    Avila-Perez P, Zarazua G, Carapia L, Tejeda S, Diaz-Delgado C, Barcelo-Quintal I (2007) J Radioanal Nucl Chem 273:625CrossRefGoogle Scholar
  23. 23.
    Zarazua G, Avila-perez P, Tejeda S, Carapia-Morales L, Diaz-Delgado C (2008) Metales pesados en agua y sedimento del río Lerma, México. In: Gallardo JF (ed) La Contaminación en Iberoamérica: Xenobióticos y Metales Pesados, Red Iberoamericana de Física y Química Ambiental, España, 2008, 313Google Scholar
  24. 24.
    Zarazua G, Avila-Perez P, Tejeda S, Araujo C, Diaz-Delgado C, Bernal I (2007) Evaluación de la distribución de Cr, Mn, Fe, Cu, Zn y Pb en materia suspendida en el Curso Alto del Río Lerma, México. In: Castellano GE, Riveros JA, Sánchez HJ, Stuz GE (eds) Avances en Análisis por Técnicas de Rayos X, Volumen XIII, Anales del IX Seminario Latinoamericano de Análisis por Técnicas de Rayos X, SARX 2004, Universidad Nacional de Córdoba, Argentina, 2007, 97Google Scholar
  25. 25.
    Avila-Perez P, Zarazua G, Carapia-Morales L, Tejeda S, Barcelo-Quintal I (2007) Caracterización de materia suspendida del agua del Curso Alto del Río Lerma, México a través de Microscopía Electrónica de Barrido-EDS. In: Castellano GE, Riveros JA, Sánchez HJ, Stuz GE (eds) Avances en Análisis por Técnicas de Rayos X, Volumen XIII, Anales del IX Seminario Latinoamericano de Análisis por Técnicas de Rayos X, SARX 2004, Universidad Nacional de Córdoba, Argentina, 2007, 60Google Scholar
  26. 26.
    Bowen HJM (1979) Environmental chemistry of elements. Academic Press, LondonGoogle Scholar
  27. 27.
    Garcia JA, Diaz-Delgado C, Quentin E, Avila-Perez P, Tejeda S, Zarazua G (2007) Hidrobiológica 17:127Google Scholar
  28. 28.
    Soto M, Paez F (2001) Bull Environ Contam Toxicol 66:350CrossRefGoogle Scholar
  29. 29.
    Diaz-Delgado C, Esteller MV, Garcia JA, Bâ KM, Avila-Perez P (2001) Water resources in the Upper Course of the Lerma River, contamination and overexploitation: contributions to the sustainable use of water, In: TWNSO, WMO, PHI-UNESCO (eds) Promoting best practices for conservation and sustainable use of water resources in the South, Italy, p 71Google Scholar
  30. 30.
    Avila-Perez P, Zarazua G, Tejeda S, Barcelo-Quintal I, Diaz-Delgado C, Carreño-Leon C (2007) X Ray Spectrom 36:361CrossRefGoogle Scholar
  31. 31.
    Tejeda S, Zarazua G, Avila-Perez P, Garcia-Mejia A, Carapia-Morales L, Diaz-Delgado C (2006) J Radioanal Nucl Chem 270:9CrossRefGoogle Scholar
  32. 32.
    Zarazua G, Avila-Perez P, Tejeda S, Barcelo-Quintal I, Martinez T (2006) Spectrochim Acta Part B 61:1180CrossRefGoogle Scholar
  33. 33.
    Dekov V, Araujo F, Van Grieken R, Subramanian V (1998) Sci Total Environ 212:89CrossRefGoogle Scholar
  34. 34.
    Lee S, Moon J, Moon H (2003) Environ Geochem Health 25:433CrossRefGoogle Scholar
  35. 35.
    Nabelkova J, Kominkova D (2006) Water Sci Technol 54:339CrossRefGoogle Scholar
  36. 36.
    Rosborg I, Nihlga B, Gerhardsson L, Sverdrup H (2006) Environ Geochem Health 28:215CrossRefGoogle Scholar
  37. 37.
    Basha S, Mansingh P, Bhagwan R, Harikrishna R, Kumar S, Anand N, Hemantbhai S, Haresh K, Jha B (2007) Water Air Soil Pollut 178:373CrossRefGoogle Scholar
  38. 38.
    Li L, Hall K, Yuan Y, Mattu G, McCallum D, Chen M (2009) Water Air Soil Pollut 197:249CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • P. Avila-Pérez
    • 1
    • 2
  • G. Zarazúa
    • 1
  • L. Carapia
    • 3
  • S. Tejeda
    • 1
    • 2
  • I. Barceló-Quintal
    • 4
  • T. Martinez
    • 5
  1. 1.Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencias AmbientalesMéxicoMéxico
  2. 2.División de Estudios de Posgrado e InvestigaciónInstituto Tecnológico de TolucaMetepecMéxico
  3. 3.Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencias AplicadasMéxicoMéxico
  4. 4.Unidad Azcapotzalco, Departamento de Ciencias BásicasUniversidad Autónoma MetropolitanaMéxicoMéxico
  5. 5.Facultad de QuimicaUniversidad Nacional Autónoma de MéxicoMéxicoMexico

Personalised recommendations