Elemental analysis of topaz from northern areas of Pakistan and assessment of induced radioactivity level after neutron irradiation for color induction

  • M. Wasim
  • W. A. Zafar
  • M. Tufail
  • M. Arif
  • M. Daud
  • A. Ahmad


To study the impurity elements, which render color-induced topaz long lived radionuclides, three samples of topaz, from three different cities of the Northern Pakistan (Baltistan, Gilgit and Mardan) were analyzed using k 0 instrumental neutron activation analysis (k 0-INAA). The samples were irradiated in Pakistan Research Reactor-1 (PARR-1) and PARR-2 at Pakistan Institute of Nuclear Science & Technology (PINSTECH), Islamabad. The method was validated by analyzing IAEA-S7 reference material. In three samples a total of 22 trace level impurity elements were quantified. Among impurities, 10 elements including As, Ce, Ga, Ge, La, Na, Sb, Sc, U and Zn were common in topaz of all the three places. The storage time has been calculated for each sample required to bring the induced radioactivity down to permissible level given by US National Regulatory Commission.


Topaz Gemstone k0-INAA Trace elements 



The authors are grateful for the help of personnel from Material Laboratory, PIEAS. Yasir Anwar and Sajid Iqbal are also acknowledged for their help during experimentation.


  1. 1.
    Manutchehr-Danai M (ed) (2009) Dictionary of gems, gemology, 3rd edn. Springer-Verlag, Heidelberg, GermanyGoogle Scholar
  2. 2.
    Cardarelli F (2008) Materials handbook, 2nd edn. Springer, London, UKGoogle Scholar
  3. 3.
    Ponce BF, Pingitore NE Jr, Hoffer JM, Anthony EY, Woronow A (1993) J Geochem Explor 49:269CrossRefGoogle Scholar
  4. 4.
    Olabanji SO, Ige OA, Mazzoli C, Ceccato D, Akintunde JA, De Poli M, Moschini G (2005) Nucl Instrum Methods Phys Res B 240:350CrossRefGoogle Scholar
  5. 5.
    Leal AS, Krambrock K, Ribeiro LGM, Menezes MABC, Vermaercke P, Sneyers L (2007) Nucl Instrum Methods Phys Res 580:423CrossRefGoogle Scholar
  6. 6.
    Ashbaugh CE (1992) Gems Gemol 28:104Google Scholar
  7. 7.
    Ashbaugh CE (1991) Radioact Radiochem 2:42Google Scholar
  8. 8.
    de Magalhaes CMS, Macedo ZS, Valerio MEG, Hernandes AC, Souza DN (2004) Nucl Instrum Methods Phys Res B 218:277CrossRefGoogle Scholar
  9. 9.
    Ying W, Yong-Bao G (2002) Radiat Phys Chem 63:223CrossRefGoogle Scholar
  10. 10.
    Souza DN, Meira RA, Lima JF, Valerio MEG, Caldas LVE (2003) Appl Radiat Isot 58:489CrossRefGoogle Scholar
  11. 11.
    Krambrock K, Ribeiro LGM, Pinheiro MVB, Leal AS, Menezes MADBC, Spaeth JM (2007) Phys Chem Miner 34:437CrossRefGoogle Scholar
  12. 12.
    Roelandts I (2000) J Radioanal Nucl Chem 243:209CrossRefGoogle Scholar
  13. 13.
    Ravisankar R, Manikandan E, Dheenathayalu M, Rao B, Seshadreesan NP, Nair KGM (2006) Nucl Instrum Methods Phys Res B 251:496CrossRefGoogle Scholar
  14. 14.
    Vitali V, Franklin UM (1986) J Archaeol Sci 13:161CrossRefGoogle Scholar
  15. 15.
    Wasim M, Zaidi JH, Arif M, Fatima I (2008) J Radioanal Nucl Chem 277:525CrossRefGoogle Scholar
  16. 16.
    Wasim M, Arif M, Zaidi JH, Anwar Y (2009) Radiochim Acta 97:651CrossRefGoogle Scholar
  17. 17.
    Wasim M (2010) J Radioanal Nucl Chem 285:337CrossRefGoogle Scholar
  18. 18.
    IAEA Analytical Quality Control Services (2004) Reference materials catalogue, 2004–2005, 1st edn. International Atomic Energy Agency, Vienna, Austria, Jan 2004, p 35Google Scholar
  19. 19.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • M. Wasim
    • 1
  • W. A. Zafar
    • 2
  • M. Tufail
    • 2
  • M. Arif
    • 1
  • M. Daud
    • 1
  • A. Ahmad
    • 2
  1. 1.Chemistry DivisionPINSTECHIslamabadPakistan
  2. 2.Pakistan Institute of Engineering and Applied SciencesIslamabadPakistan

Personalised recommendations