Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 287, Issue 2, pp 557–565 | Cite as

Effect of pH, ionic strength and humic substances on the adsorption of Uranium (VI) onto Na-rectorite

  • Donglin Zhao
  • Shubin Yang
  • Shaohua Chen
  • Zhiqiang Guo
  • Xin Yang
Article

Abstract

In this study, the adsorption of U(VI) from aqueous solution on Na-rectorite was studied as a function of various environmental conditions such as contact time, pH, ionic strength, soil humic acid (HA)/fulvic acid (FA), solid contents, and temperature under ambient conditions by using batch technique. The kinetic adsorption is fitted by the pseudo-second-order model very well. The adsorption of U(VI) on Na-rectorite was strongly dependent on pH and ionic strength. A positive effect of HA/FA on U(VI) adsorption was found at low pH, whereas a negative effect was observed at high pH. The presence of HA/FA enhanced the U(VI) adsorption at low pH values, but reduced U(VI) adsorption at high pH. The thermodynamic parameters (ΔH 0, ΔS 0, and ΔG 0) were also calculated from the temperature dependent adsorption isotherms, and the results suggested that the adsorption of U(VI) on Na-rectorite was a spontaneous and endothermic process.

Keywords

Na-rectorite U(VI) Adsorption Humic acid Fulvic acid 

Notes

Acknowledgments

Financial supports from the National Natural Science Foundation of China (20907055; 20971126) and Knowledge Innovation Program of CAS are acknowledged.

References

  1. 1.
    Hsyun SP, Cho YH, Hahn PS, Kim SJ (2001) J Radioanal Nucl Chem 250:55–62CrossRefGoogle Scholar
  2. 2.
    Akyil S, Aslani MAA, Eral M (2003) J Radioanal Nucl Chem 256:45–51CrossRefGoogle Scholar
  3. 3.
    Sylwester ER, Hudson EA, Allen PG (2000) Geochim Cosmochim Acta 64:2431–2438CrossRefGoogle Scholar
  4. 4.
    Liao X, Lu Z, Xu D, Liu X, Shi B (2004) Environ Sci Technol 38:324–328CrossRefGoogle Scholar
  5. 5.
    Sachs S, Bernhard G (2008) Chemosphere 72:1441–1447CrossRefGoogle Scholar
  6. 6.
    Baik MH, Cho WJ, Hahn PS (2004) J Radioanal Nucl Chem 260:495–502CrossRefGoogle Scholar
  7. 7.
    Shao D, Jiang Z, Wang X, Li J, Meng Y (2009) J Phys Chem B 113:860–864CrossRefGoogle Scholar
  8. 8.
    Zhang G, Yang X, Liu Y, Jia Y, Yu G, Ouyang S (2004) J Colloid Interface Sci 278:265–269CrossRefGoogle Scholar
  9. 9.
    Zhang G, Liu Y, Xie Y, Yang X (2005) Appl Clay Sci 29:15–21CrossRefGoogle Scholar
  10. 10.
    Tan X, Chen C, Yu S, Wang X (2008) Appl Geochem 23:2767–2777CrossRefGoogle Scholar
  11. 11.
    Yu S, Chen C, Chang P, Wang T, Lu S, Wang X (2008) Appl Clay Sci 38:219–226CrossRefGoogle Scholar
  12. 12.
    Chang P, Yu S, Chen T, Ren A, Chen C, Wang X (2007) J Radioanal Nucl Chem 274:153–160CrossRefGoogle Scholar
  13. 13.
    Wu W, Fan Q, Lu S, Niu S, Wang X (2006) Adsorpt Sci Technol 24:601–610CrossRefGoogle Scholar
  14. 14.
    Hu J, Chen C, Sheng G, Li J, Chen Y, Wang X (2010) Radiochim Acta 98:1–9CrossRefGoogle Scholar
  15. 15.
    Xu D, Chen C, Tan X, Jun H, Wang X (2007) Appl Geochem 22:2892–2906CrossRefGoogle Scholar
  16. 16.
    Tan X, Wang X, Geckeis H, Rabung T (2008) Environ Sci Technol 42:6532–6537CrossRefGoogle Scholar
  17. 17.
    Tan X, Fan Q, Wang X, Grambow B (2009) Environ Sci Technol 43:3115–3121CrossRefGoogle Scholar
  18. 18.
    Tan X, Chang P, Fan Q, Zhou X, Yu SM, Wang S, Wang X (2008) Colloids Surf A 328:8–14CrossRefGoogle Scholar
  19. 19.
    Du Q, Sun Z, Forsling W, Tang H (1997) J Colloid Interface Sci 187:221–231CrossRefGoogle Scholar
  20. 20.
    Naveau A, Monteil-Rivera F, Dumonceau J, Catalette H, Simoni E (2006) J Colloid Interface Sci 293:27–35CrossRefGoogle Scholar
  21. 21.
    Ordoñez-Regil E, Drot R, Simoni E (2003) J Colloid Interface Sci 263:391–399CrossRefGoogle Scholar
  22. 22.
    Giustetto R, Xamena FXL, Ricchiardi G, Bordiga S, Damin A, Gobetto R, Chierotti MR (2005) J Phys Chem B 109:19360–19368CrossRefGoogle Scholar
  23. 23.
    Ho YS, McKay G (2000) Water Res 34:735–742CrossRefGoogle Scholar
  24. 24.
    Gorman-Lewis D, Burns PC, Fein JB (2008) J Chem Thermodyn 40:335–352CrossRefGoogle Scholar
  25. 25.
    Gorman-Lewis D, Fein JB, Burns PC, Szymanowski JES, Converse J (2008) J Chem Thermodyn 40:980–990CrossRefGoogle Scholar
  26. 26.
    Kowal-Fouchard A, Drot R, Simoni E, Ehrhardt JJ (2004) Environ Sci Technol 38:1399–1407CrossRefGoogle Scholar
  27. 27.
    Fan Q, Shao D, Lu Y, Wang S, Wang X (2009) Chem Eng J 150:188–195CrossRefGoogle Scholar
  28. 28.
    Ren X, Wang S, Yang S (2010) J Radioanal Nucl Chem 283:253–259CrossRefGoogle Scholar
  29. 29.
    Montavon G, Markai S, Andres Y, Grambow B (2002) Environ Sci Technol 36:3303–3309CrossRefGoogle Scholar
  30. 30.
    Takahashi Y, Minai Y, Ambe S, Makide Y, Ambe F (1999) Geochim Cosmochim Acta 63:815–836CrossRefGoogle Scholar
  31. 31.
    Xu D, Wang X, Chen C, Zhou X, Tan X (2006) Radiochim Acta 94:429–434CrossRefGoogle Scholar
  32. 32.
    Xu D, Shao D, Chen C, Ren AP, Wang X (2006) Radiochim Acta 94:97–102CrossRefGoogle Scholar
  33. 33.
    Bhattacharyya KG, Gupta SS (2008) Colloid Surf. A 317:71–79CrossRefGoogle Scholar
  34. 34.
    Sheng G, Shao D, Fan Q, Xu D, Chen Y, Wang X (2009) Radiochim Acta 97:621–630CrossRefGoogle Scholar
  35. 35.
    Langmuir I (1918) J Am Chem Soc 40:1361–1403CrossRefGoogle Scholar
  36. 36.
    Tan X, Wang X, Fang M, Chen C (2007) Colloid Surf. A 296:109–116CrossRefGoogle Scholar
  37. 37.
    Ibrahim HA, El-Kamash AM, Hanafy M, Abdel-Monem NM (2008) Chem Eng J 144:67–74CrossRefGoogle Scholar
  38. 38.
    Kilpatrick M, Baker L Jr, McKinney C Jr (1953) J Phys Chem 57:385–390CrossRefGoogle Scholar
  39. 39.
    Shahwan T, Erten HN (2004) J Radioanal Nucl Chem 260:43–48CrossRefGoogle Scholar
  40. 40.
    Donat R, Akdogan A, Erdem E, Cetisli H (2005) J Colloid Interface Sci 286:43–52CrossRefGoogle Scholar
  41. 41.
    Ozcan A, Oncu E, Ozcan A (2006) Colloid Surf A 277:90–97CrossRefGoogle Scholar
  42. 42.
    Khan AA, Singh RP (1987) Colloids Surf A 24:33–42CrossRefGoogle Scholar
  43. 43.
    Li W, Pan G, Zhang MY, Zhao DY, Yang YH, Chen H, He GZ (2008) J Colloid Interface Sci 319:385–391CrossRefGoogle Scholar
  44. 44.
    Chang P, Wang X, Yu S, Wang S (2007) Colloid Surf A 302:75–81CrossRefGoogle Scholar
  45. 45.
    Shao D, Fan Q, Li J, Niu Z, Wu W, Chen Y, Wang X (2009) Microporous Mesoporous Mater 123:1–9CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Donglin Zhao
    • 1
    • 2
  • Shubin Yang
    • 2
  • Shaohua Chen
    • 1
  • Zhiqiang Guo
    • 2
  • Xin Yang
    • 2
  1. 1.School of Materials and Chemical EngineeringAnhui University of ArchitectureHefeiPeople’s Republic of China
  2. 2.Key Laboratory of Novel Thin Film Solar CellsInstitute of Plasma Physics, Chinese Academy of SciencesHefeiPeople’s Republic of China

Personalised recommendations