Advertisement

Measurement of isomeric yield ratios for the 44m,gSc isomeric pairs produced from 45Sc and natTi targets at 50-, 60-, and 70-MeV bremsstrahlung

  • Nguyen Van Do
  • Pham Duc Khue
  • Kim Tien Thanh
  • Tran Hoai Nam
  • Md. Shakilur Rahman
  • Kyung-Sook Kim
  • Manwoo Lee
  • Guinyun Kim
  • Hee-Seock Lee
  • Moo-Hyun Cho
  • In Soo Ko
  • Won Namkung
Article

Abstract

We measured the isomeric yield ratios for the 44m,gSc isomeric pairs produced from different reaction channels 45Sc(γ,n)44m,gSc and natTi(γ,xnp)44m,gSc by using the activation method and γ-ray spectroscopic methods at 50-, 60-, and 70-MeV bremsstrahlung energies. The high-purity natural Sc and Ti foils in disc shape were irradiated with uncollimated bremsstrahlung beams generated from an electron linear accelerator at Pohang Accelerator Laboratory. The induced activities in the irradiated foils were measured by the high-resolution γ-ray spectrometric system which consists of a high-purity Germanium detector and a multichannel analyzer. In order to improve the accuracy of the experimental results the necessary corrections were made in the γ-ray activity measurements and data analysis. The measured isomeric yield ratios for the 45Sc(γ,n)44m,gSc reaction are 0.20 ± 0.02, 0.21 ± 0.02, and 0.21 ± 0.02 and those for the natTi(γ,xnp)44m,gSc reaction are 0.063 ± 0.012, 0.079 ± 0.014, and 0.124 ± 0.022 at 50-, 60-, and 70-MeV bremsstrahlung energies, respectively. The obtained results are compared with the corresponding values found in the literature. We observed that the isomeric yield ratios for the 45Sc(γ,n)44m,gSc reaction increase rapidly with the increasing bremsstrahlung energies from the reaction threshold up to giant resonance region, and then those are almost constant in the energy range from about 30 to 2.5 GeV. The isomeric yield ratios for the natTi(γ,xnp)44m,gSc reaction increase with increasing bremsstrahlung energies in a wide range of bremsstrahlung energies from 50 to 2.5 GeV.

Keywords

Isomeric yield ratio Photonuclear reactions 45Sc(γ,n)44m,gSc natTi(γ,xnp)44m,gSc Activation method 50,- 60,- and 70-MeV bremsstrahlung HPGe detector 

Notes

Acknowledgments

The authors would like to express their sincere thanks to the staffs of Pohang Accelerator Laboratory for excellent operation of the electron linac and their strong support. This work was supported by the National Research Foundation of Korea (NRF) through a Grant provided by the Korean Ministry of Education, Science and Technology (MEST) in 2010 (Project Nos. 2010-0018498 and 2010-0021375), by the Institutional Activity Program of Korea Atomic Energy Research Institute (KAERI), and by the Vietnam National Foundation for Science and Technology Development (NAFOSTED).

References

  1. 1.
    Volpel R (1972) Nucl Phys A 182:411CrossRefGoogle Scholar
  2. 2.
    Bartsch H, Huber K, Kneissl U, Krieger H (1976) Nucl Phys A 256:243CrossRefGoogle Scholar
  3. 3.
    Kolev D, Dobreva E, Nenov N, Todorov V (1995) Nucl Instrum Method A 356:390CrossRefGoogle Scholar
  4. 4.
    Haller IB, Rudstam G (1961) J Inorg Nucl Chem 19:1CrossRefGoogle Scholar
  5. 5.
    Kolev D (1998) Appl Radiat Isot 49:989CrossRefGoogle Scholar
  6. 6.
    Huizenga JR, Vandenbosch R (1960) Phys Rev 120:1305CrossRefGoogle Scholar
  7. 7.
    Vandenbosch R, Huizenga R (1960) Phys Rev 120:1313CrossRefGoogle Scholar
  8. 8.
    Bethe HA (1973) Rev Mod Phys 9:84Google Scholar
  9. 9.
    Bloch C (1954) Phys Rev 93:1094CrossRefGoogle Scholar
  10. 10.
    Le Couteur JK, Lang JM (1959) Nucl Phys 13:32CrossRefGoogle Scholar
  11. 11.
    Birn IG, Strohmaier B, Freiesleben H, Qaim SM (1995) Phys Rev C 52:2546CrossRefGoogle Scholar
  12. 12.
    Kao TH, Alford WL (1975) Nucl Phys A 237:11CrossRefGoogle Scholar
  13. 13.
    Vanska R, Rieppo R (1981) Nucl Instrum Method 179:525CrossRefGoogle Scholar
  14. 14.
    Qaim SM (1972) Nucl Phys A 185:614CrossRefGoogle Scholar
  15. 15.
    Qaim SM (1985) Nucl Phys A 438:284CrossRefGoogle Scholar
  16. 16.
    Nesaraja CD, Sudar S, Qaim SM (2003) Phys Rev C 68:024603CrossRefGoogle Scholar
  17. 17.
    Sarkar R, Bhoraskar VN (1992) Phys Rev C 46:2246CrossRefGoogle Scholar
  18. 18.
    Reyhancan IA, Bostan M, Durusoy A, Elmali A, Baykal A, Ozbir Y (2003) Ann Nucl Energy 30:1539CrossRefGoogle Scholar
  19. 19.
    Mangal SK, Gill PS (1963) Nucl Phys 49:510CrossRefGoogle Scholar
  20. 20.
    Mangal SK, Khurana CS (1965) Nucl Phys 69:158CrossRefGoogle Scholar
  21. 21.
    Ericsson M, Jonsson GG (1975) Nucl Phys A 242:507CrossRefGoogle Scholar
  22. 22.
    Gunther W, Huber K, Kneissel U, Krieger H (1978) Nucl Phys A 297:254CrossRefGoogle Scholar
  23. 23.
    Zheltonozhski VA, Mazur VM (2000) Yad Fiz 63:389Google Scholar
  24. 24.
    Davidov MG, Magera VG, Trukhov AV, Shomurodov EM (1985) Atom Energy 58:47Google Scholar
  25. 25.
    Walters WB, Hummel JP (1966) Phys Rev 150:867CrossRefGoogle Scholar
  26. 26.
    Bachschi NM, David P, Debrus J, Lubke F, Mommsen H, Schoenmackers R, Jonsson GG, Lindgren K (1976) Nucl Phys A 264:493CrossRefGoogle Scholar
  27. 27.
    Nguyen VD, Pham DK, Kim TT, Tran DT, Phung VD, Lee YS, Kim GN, Oh Y, Lee HS, Kang H, Cho MH, Ko IS, Namkung W (2007) J Korean Phys Soc 50:417CrossRefGoogle Scholar
  28. 28.
    Nguyen VD, Pham DK, Kim TT, Le TS, Rahman MS, Kim KS, Lee MW, Kim GN, Oh Y, Lee HS, Cho MH, Ko IS, Namkung W (2008) Nucl Instrum Method B 266:5080CrossRefGoogle Scholar
  29. 29.
    Tilbury RS, Yaffe L (1963) Can J Chem 41:2634CrossRefGoogle Scholar
  30. 30.
    Nguyen VD, Pham DK, Tran DT, Phung VD, Lee YS, Lee HS, Cho MH, Ko IS, Namkung W, Meaze AKMMH, Devan K, Kim GN (2006) J Korean Phys Soc 48:382Google Scholar
  31. 31.
    Rahman MS, Kim KS, Lee MW, Kim GN, Oh Y, Lee HS, Cho MH, Ko IS, Namkung W, Nguyen VD, Pham DK, Kim TT, Ro TI (2010) J Radioanal Nucl Chem 283:519CrossRefGoogle Scholar
  32. 32.
    Nguyen VD, Pham DK, Kim TT, Rahman MS, Kim KS, Kim GN, Lee HS, Cho MH, Ko IS, Namkung W, Ro TI (2010) J Radioanal Nucl Chem 283:683CrossRefGoogle Scholar
  33. 33.
    Kim GN, Lee YS, Skoy V, Kovalchuck V, Cho MH, Ko IS, Namkung W, Lee DW, Kim HD, Ro TI, Min YG (2001) J Korean Phys Soc 38:14Google Scholar
  34. 34.
    Kim GN, Ahmed H, Machrafi R, Son D, Skoy V, Lee YS, Kang H, Cho MH, Ko IS, Namkung W (2003) J Korean Phys Soc 42:479Google Scholar
  35. 35.
    Firestone RB (1996) Table of Isotopes. Wiley-Interscience, Hoboken (CD Rom Edition)Google Scholar
  36. 36.
    Debertin K, Heimer RG (1988) Gamma and X-ray spectrometry with semiconductor detectors. North Holland Elsevier, New YorkGoogle Scholar
  37. 37.
    de Bruin M, Korthoven PJM (1974) Radiochem Radioanal Lett 19:153Google Scholar
  38. 38.
    Richardson AE, Sallee WW (1990) Nucl Instrum Method A 299:344CrossRefGoogle Scholar
  39. 39.
    Tran DT, Truong TA, Nguyen TK, Phan VC, Nguyen TV (2010) J Radioanal Nucl Chem. doi: 10.1007/s10967-010-0630-5

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Nguyen Van Do
    • 1
  • Pham Duc Khue
    • 1
  • Kim Tien Thanh
    • 1
  • Tran Hoai Nam
    • 2
  • Md. Shakilur Rahman
    • 3
  • Kyung-Sook Kim
    • 3
  • Manwoo Lee
    • 3
  • Guinyun Kim
    • 3
  • Hee-Seock Lee
    • 4
  • Moo-Hyun Cho
    • 4
  • In Soo Ko
    • 4
  • Won Namkung
    • 4
  1. 1.Institute of PhysicsVietnam Academy of Science and TechnologyHanoiViet Nam
  2. 2.Institute of Nuclear Engineering and Environmental PhysicsHanoi University of TechnologyHanoiViet Nam
  3. 3.Department of PhysicsKyungpook National UniversityDaeguRepublic of Korea
  4. 4.Pohang Accelerator LaboratoryPohang University of Science and TechnologyPohangRepublic of Korea

Personalised recommendations