Skip to main content
Log in

Measurement of isomeric yield ratios for the 44m,gSc isomeric pairs produced from 45Sc and natTi targets at 50-, 60-, and 70-MeV bremsstrahlung

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

We measured the isomeric yield ratios for the 44m,gSc isomeric pairs produced from different reaction channels 45Sc(γ,n)44m,gSc and natTi(γ,xnp)44m,gSc by using the activation method and γ-ray spectroscopic methods at 50-, 60-, and 70-MeV bremsstrahlung energies. The high-purity natural Sc and Ti foils in disc shape were irradiated with uncollimated bremsstrahlung beams generated from an electron linear accelerator at Pohang Accelerator Laboratory. The induced activities in the irradiated foils were measured by the high-resolution γ-ray spectrometric system which consists of a high-purity Germanium detector and a multichannel analyzer. In order to improve the accuracy of the experimental results the necessary corrections were made in the γ-ray activity measurements and data analysis. The measured isomeric yield ratios for the 45Sc(γ,n)44m,gSc reaction are 0.20 ± 0.02, 0.21 ± 0.02, and 0.21 ± 0.02 and those for the natTi(γ,xnp)44m,gSc reaction are 0.063 ± 0.012, 0.079 ± 0.014, and 0.124 ± 0.022 at 50-, 60-, and 70-MeV bremsstrahlung energies, respectively. The obtained results are compared with the corresponding values found in the literature. We observed that the isomeric yield ratios for the 45Sc(γ,n)44m,gSc reaction increase rapidly with the increasing bremsstrahlung energies from the reaction threshold up to giant resonance region, and then those are almost constant in the energy range from about 30 to 2.5 GeV. The isomeric yield ratios for the natTi(γ,xnp)44m,gSc reaction increase with increasing bremsstrahlung energies in a wide range of bremsstrahlung energies from 50 to 2.5 GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Volpel R (1972) Nucl Phys A 182:411

    Article  Google Scholar 

  2. Bartsch H, Huber K, Kneissl U, Krieger H (1976) Nucl Phys A 256:243

    Article  Google Scholar 

  3. Kolev D, Dobreva E, Nenov N, Todorov V (1995) Nucl Instrum Method A 356:390

    Article  CAS  Google Scholar 

  4. Haller IB, Rudstam G (1961) J Inorg Nucl Chem 19:1

    Article  CAS  Google Scholar 

  5. Kolev D (1998) Appl Radiat Isot 49:989

    Article  CAS  Google Scholar 

  6. Huizenga JR, Vandenbosch R (1960) Phys Rev 120:1305

    Article  CAS  Google Scholar 

  7. Vandenbosch R, Huizenga R (1960) Phys Rev 120:1313

    Article  CAS  Google Scholar 

  8. Bethe HA (1973) Rev Mod Phys 9:84

    Google Scholar 

  9. Bloch C (1954) Phys Rev 93:1094

    Article  CAS  Google Scholar 

  10. Le Couteur JK, Lang JM (1959) Nucl Phys 13:32

    Article  CAS  Google Scholar 

  11. Birn IG, Strohmaier B, Freiesleben H, Qaim SM (1995) Phys Rev C 52:2546

    Article  CAS  Google Scholar 

  12. Kao TH, Alford WL (1975) Nucl Phys A 237:11

    Article  Google Scholar 

  13. Vanska R, Rieppo R (1981) Nucl Instrum Method 179:525

    Article  CAS  Google Scholar 

  14. Qaim SM (1972) Nucl Phys A 185:614

    Article  CAS  Google Scholar 

  15. Qaim SM (1985) Nucl Phys A 438:284

    Article  Google Scholar 

  16. Nesaraja CD, Sudar S, Qaim SM (2003) Phys Rev C 68:024603

    Article  Google Scholar 

  17. Sarkar R, Bhoraskar VN (1992) Phys Rev C 46:2246

    Article  CAS  Google Scholar 

  18. Reyhancan IA, Bostan M, Durusoy A, Elmali A, Baykal A, Ozbir Y (2003) Ann Nucl Energy 30:1539

    Article  CAS  Google Scholar 

  19. Mangal SK, Gill PS (1963) Nucl Phys 49:510

    Article  CAS  Google Scholar 

  20. Mangal SK, Khurana CS (1965) Nucl Phys 69:158

    Article  CAS  Google Scholar 

  21. Ericsson M, Jonsson GG (1975) Nucl Phys A 242:507

    Article  Google Scholar 

  22. Gunther W, Huber K, Kneissel U, Krieger H (1978) Nucl Phys A 297:254

    Article  Google Scholar 

  23. Zheltonozhski VA, Mazur VM (2000) Yad Fiz 63:389

    Google Scholar 

  24. Davidov MG, Magera VG, Trukhov AV, Shomurodov EM (1985) Atom Energy 58:47

    Google Scholar 

  25. Walters WB, Hummel JP (1966) Phys Rev 150:867

    Article  CAS  Google Scholar 

  26. Bachschi NM, David P, Debrus J, Lubke F, Mommsen H, Schoenmackers R, Jonsson GG, Lindgren K (1976) Nucl Phys A 264:493

    Article  Google Scholar 

  27. Nguyen VD, Pham DK, Kim TT, Tran DT, Phung VD, Lee YS, Kim GN, Oh Y, Lee HS, Kang H, Cho MH, Ko IS, Namkung W (2007) J Korean Phys Soc 50:417

    Article  CAS  Google Scholar 

  28. Nguyen VD, Pham DK, Kim TT, Le TS, Rahman MS, Kim KS, Lee MW, Kim GN, Oh Y, Lee HS, Cho MH, Ko IS, Namkung W (2008) Nucl Instrum Method B 266:5080

    Article  CAS  Google Scholar 

  29. Tilbury RS, Yaffe L (1963) Can J Chem 41:2634

    Article  CAS  Google Scholar 

  30. Nguyen VD, Pham DK, Tran DT, Phung VD, Lee YS, Lee HS, Cho MH, Ko IS, Namkung W, Meaze AKMMH, Devan K, Kim GN (2006) J Korean Phys Soc 48:382

    CAS  Google Scholar 

  31. Rahman MS, Kim KS, Lee MW, Kim GN, Oh Y, Lee HS, Cho MH, Ko IS, Namkung W, Nguyen VD, Pham DK, Kim TT, Ro TI (2010) J Radioanal Nucl Chem 283:519

    Article  CAS  Google Scholar 

  32. Nguyen VD, Pham DK, Kim TT, Rahman MS, Kim KS, Kim GN, Lee HS, Cho MH, Ko IS, Namkung W, Ro TI (2010) J Radioanal Nucl Chem 283:683

    Article  CAS  Google Scholar 

  33. Kim GN, Lee YS, Skoy V, Kovalchuck V, Cho MH, Ko IS, Namkung W, Lee DW, Kim HD, Ro TI, Min YG (2001) J Korean Phys Soc 38:14

    CAS  Google Scholar 

  34. Kim GN, Ahmed H, Machrafi R, Son D, Skoy V, Lee YS, Kang H, Cho MH, Ko IS, Namkung W (2003) J Korean Phys Soc 42:479

    Google Scholar 

  35. Firestone RB (1996) Table of Isotopes. Wiley-Interscience, Hoboken (CD Rom Edition)

    Google Scholar 

  36. Debertin K, Heimer RG (1988) Gamma and X-ray spectrometry with semiconductor detectors. North Holland Elsevier, New York

    Google Scholar 

  37. de Bruin M, Korthoven PJM (1974) Radiochem Radioanal Lett 19:153

    Google Scholar 

  38. Richardson AE, Sallee WW (1990) Nucl Instrum Method A 299:344

    Article  Google Scholar 

  39. Tran DT, Truong TA, Nguyen TK, Phan VC, Nguyen TV (2010) J Radioanal Nucl Chem. doi:10.1007/s10967-010-0630-5

Download references

Acknowledgments

The authors would like to express their sincere thanks to the staffs of Pohang Accelerator Laboratory for excellent operation of the electron linac and their strong support. This work was supported by the National Research Foundation of Korea (NRF) through a Grant provided by the Korean Ministry of Education, Science and Technology (MEST) in 2010 (Project Nos. 2010-0018498 and 2010-0021375), by the Institutional Activity Program of Korea Atomic Energy Research Institute (KAERI), and by the Vietnam National Foundation for Science and Technology Development (NAFOSTED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guinyun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Do, N.V., Khue, P.D., Thanh, K.T. et al. Measurement of isomeric yield ratios for the 44m,gSc isomeric pairs produced from 45Sc and natTi targets at 50-, 60-, and 70-MeV bremsstrahlung. J Radioanal Nucl Chem 287, 813–820 (2011). https://doi.org/10.1007/s10967-010-0831-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0831-y

Keywords

Navigation