Skip to main content
Log in

Tritiation of several intrinsically activated photoaffinity agents at high specific activity

Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The tritiation of natural photoffinity ligands chlorpromazine and cytochalasin B is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Singh A, Thornton ER, Westheimer FH (1962) The photolysis of diazoacetylchymotrypsin. J Biol Chem 237:PC3006–PC3008

    CAS  Google Scholar 

  2. Filer CN (2009) Tritium labelled photoaffinity agents. J Radioanal Nucl Chem 281:521–530

    Article  CAS  Google Scholar 

  3. Buchman O, Shimoni M (1982) Tritium labelling of psychopharmacologic agents. J Label Compd Radiopharm 19:139–148

    Article  CAS  Google Scholar 

  4. Egan JA, Nugent RP, Filer CN (2010) Mirfentanil and A-4334: tritiation at high specific activity. Appl Radiat Isot 68:120–121

    Article  CAS  Google Scholar 

  5. Fujiwara H, Watanabe M, Yamanaka I, Takagi T, Sasaki Y (1988) Solution structure and preferred orientation of 3,7-dibromo-10H-phenothiazine dissolved in nematic liquid crystal. Bull Chem Soc Jpn 61:369–373

    Article  CAS  Google Scholar 

  6. Zhang D, Freeman JP, Sutherland JB, Walker AE, Yang Y, Cerniglia CE (1996) Biotransformation of chlorpromazine and methdilazine by Cunninghamella elegans. Appl Environ Microbiol 62:798–803

    CAS  Google Scholar 

  7. Chiara DC, Hamouda AK, Ziebell MR, Mejia LA, Garcia G, Cohen JB (2009) [3H] Chlorpromazine photolabeling of the torpedo nicotinic acetylcholine receptor identifies two state-dependent binding sites in the ion chanel. Biochemistry 48:10066–10077

    Article  CAS  Google Scholar 

  8. Revah F, Galzi J-L, Giraudat J, Haumont P-Y, Lederer F, Changeux J-P (1990) The noncompetitive blocker [3H] chlorpromazine labels three amino acids of the acetylcholine receptor gamma subunit: implications for the alpha-helical organization of regions MII and for the structure of the ion channel. Proc Natl Acad Sci 87:4675–4679

    Article  CAS  Google Scholar 

  9. Giraudat J, Dennis M, Heidmann T, Chang J-Y, Changeux J-P (1986) Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: serine-262 of the delta subunit is labeled by [3H] chlorpromazine. Proc Natl Acad Sci 83:2719–2723

    Article  CAS  Google Scholar 

  10. Haidle AM, Myers AG (2004) An enantioselective, modular, and general route to the cytochalasins: synthesis of L-696, 474 and cytochalasin B. Proc Natl Acad Sci 101:12048–12053

    Article  CAS  Google Scholar 

  11. Aldridge DC, Armstrong JJ, Speake RN, Turner WB (1967) The structures of cytochalasins A and B. Chem Commun 1667–1676

  12. Lin S, Santi DV, Spudich JA (1974) Biochemical studies on the mode of action of cytochalasin B. J Biol Chem 249:2268–2274

    CAS  Google Scholar 

  13. Graden DW, Lynn DG (1984) 2D exchange spectroscopy and conformational assignment in macrocyclic ring natural products: cytochalasin B. J Am Chem Soc 106:1119–1121

    Article  CAS  Google Scholar 

  14. Griffin JF, Rampal AL, Jung CY (1982) Inhibition of glucose transport in human erythrocytes by cytochalasins: a model based on diffraction studies. Proc Natl Acad Sci 79:3759–3763

    Article  CAS  Google Scholar 

  15. Barros MT, Alves CM, Santos AG, Godinho LS, Maycock CD (1995) On the diastereoselectivity of the 1, 2-reduction of 2-alkyl-4-hydroxycyclopentenones with sodium borohydride in the presence of cerium (III): synthesis of prostaglandin precursors. Tetrahedron Lett 36:2321–2324

    Article  CAS  Google Scholar 

  16. Shanahan MF (1982) Cytochalasin B. A natural photoaffinity ligand for labeling the human erythrocyte glucose transporter. J Biol Chem 257:7290–7293

    CAS  Google Scholar 

  17. Cloherty EK, Levine KB, Carruthers A (2001) The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites. Biochemistry 40:15549–15561

    Article  CAS  Google Scholar 

  18. McDonald TP, Walmsley AR, Martin GEM, Henderson PJF (1995) The role of tryptophans 371 and 395 in the binding of antibiotics and the transport of sugars by the d-galactose-H+ symport protein (GalP) from Escherichia coli. J Biol Chem 270:30359–30370

    Article  CAS  Google Scholar 

  19. Nishimura H, Kuzuya H, Kosaki A, Okamoto M, Okamoto M, Kono S, Inque G, Maeda I, Imura H (1992) Monoclonal antibodies possibly recognize conformational changes in the human erythrocyte glucose transporter. Biochem J 281:103–106

    CAS  Google Scholar 

  20. Dick APK, Harik SI, Klip A, Walker DM (1984) Identification and characterization of the glucose transporter of the blood-brain barrier by cytochalasin B binding and immunological reactivity. Proc Natl Acad Sci 81:7233–7237

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We would like to acknowledge the contribution of Dr. Puliyer Srinivasan of PerkinElmer Health Sciences in obtaining the NMR spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Crist N. Filer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahern, D.G., Orphanos, D. & Filer, C.N. Tritiation of several intrinsically activated photoaffinity agents at high specific activity. J Radioanal Nucl Chem 287, 801–805 (2011). https://doi.org/10.1007/s10967-010-0830-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0830-z

Keywords

Navigation