Skip to main content
Log in

Synthesis, radiochemical and biological characteristics of 99mTc-8-hydroxy-7-substituted quinoline complex: a novel agent for infection imaging

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

2,2′-[(8-hydroxyquinolin-7-yl)methylazanediyl]diacetic acid (HQMADA) was synthesized via reaction of 8-hydroxyquinoline with iminodiacetic acid in presence of paraformaldehyde with a yield of 27%. The obtained compound was well characterized via different analytical techniques. Labeling of the synthesized compound with technetium-99m in pertechnetate form (99mTcO4 ) in the presence of stannous chloride dihydrate was carried out via chelation reaction. The reaction parameters that affect the labeling yield such as HQMADA concentration, stannous chloride dihydrate concentration, pH of the reaction mixture, and reaction time were studied to optimize the labeling conditions. Maximum radiochemical yield of 99mTc-HQMADA complex (91.9%) was obtained by using 1.5 mg HQMADA, 50 μg SnCl2·2H2O, pH 8 and 30 min reaction time. Biodistribution studies in mice were carried out in experimentally induced infection in the left thigh using E. coli. 99mTc-HQMADA complex showed higher uptake (T/NT = 5.5 ± 0.3) in the infectious lesion than the commercially available 99mTc-ciprofloxacin (T/NT = 3.8 ± 0.8). Biodistribution studies for 99mTc-HQMADA complex in Albino mice bearing septic and aseptic inflammation models showed that 99mTc-HQMADA complex able to differentiate between septic and aseptic inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Britton KE, Vinjamuri S, Hall AV (1997) Eur J Nucl Med 24:553–555

    CAS  Google Scholar 

  2. Seabold JE, Palestro CJ, Brown ML (1997) J Nucl Med 38:994–997

    CAS  Google Scholar 

  3. Staab EV, Mccartney H (1978) Semin Nucl Med 8:219–223

    Article  CAS  Google Scholar 

  4. Love C, Palestro C (2004) J Nucl Med Technol 32:47–57

    Google Scholar 

  5. Chianelli M, Mather SJ, Martin-Comin J, Signore A (1997) J Nucl Med Commun 18:437–455

    Article  CAS  Google Scholar 

  6. Corstens FHM, Van Der Meer JWM (1999) Lancet 354:765–770

    Article  CAS  Google Scholar 

  7. Van Eerd JEM, Broekema M, Harris TD, Edwards DS, Oyen WJG, Corstens FHM, Boerman OC (2005) J Nucl Med 46:1546–1551

    Google Scholar 

  8. Laverman P, Dams ET, Oyen WJ, Storm G, Koenders EB, Prevost R, Van der Meer JW, Costens FHM, Boerman OC (1999) J Nucl Med 40:192–197

    CAS  Google Scholar 

  9. Pirmettis I, Limouris GS, Papadopoulos M (1999) Eur J Nucl Med 26:1108

    Google Scholar 

  10. Vinjamuri S, Hall AV, Solanki KK (1996) Lancet 347:233–235

    Article  CAS  Google Scholar 

  11. Rien HS, Huub JR, Otto CB, Rudid D, Guido S (2004) J Nucl Med 45:2088–2094

    Google Scholar 

  12. Seung JO, Jin SR, Joong WS, Eun JY, Hyun JH (2002) Appl Radiat Isot 57:193–195

    Article  Google Scholar 

  13. Welling MM, Lupetti A, Balter HS, Lanzzeri S, Souto B, Rey AM, Savio EO, Paulusma-Annema A, Pauwels EK, Nibbering PH (2001) J Nucl Med 42:788–790

    CAS  Google Scholar 

  14. Valtonen V, Karppinen L, Kariniemi AL (1989) J Infect Dis Suppl 60:79–83

    CAS  Google Scholar 

  15. El-Ghany EA, Amine AM, El-Kawy OA, Amin M (2007) J Labelled Comp Radiopharm 50:25–29

    Article  CAS  Google Scholar 

  16. El-Ghany EA, El-Kolaly MT, Amine AM, El-Sayed AS, Abdel-Gelil F (2005) J Radioanal Nucl Chem 266:131–135

    Article  CAS  Google Scholar 

  17. Motaleb MA (2007) J Radioanal Nucl Chem 272:95–98

    Article  CAS  Google Scholar 

  18. Motaleb MA (2007) J Radioanal Nucl Chem 272:167–171

    Article  CAS  Google Scholar 

  19. Yurt Lambrecht F, Durkan K, Unak P (2008) J Radioanal Nucl Chem 275:161–166

    Article  Google Scholar 

  20. Motaleb MA (2009) J Labelled Comp Radiopharm 52:415–418

    Article  CAS  Google Scholar 

  21. Motaleb MA (2010) J Labelled Comp Radiopharm 53:104–109

    Article  CAS  Google Scholar 

  22. Sankha C, Sujata SD, Susmita C, Kakali D, Mridula M, Bharat RS, Samarendu S, Shantanu G (2010) Appl Radiat Isot 68:314–316

    Article  Google Scholar 

  23. Welling MM, Paulusma-Annema A, Balter HS, Pauwels EKJ, Nibbering PH (2000) Eur J Nucl Med 27:292–296

    Article  CAS  Google Scholar 

  24. Srivastava SC, Richards P (1983) Technetium-labled compounds. In: Rayudu GVS (ed) Radiotracers for medical applications, CRC series in radiotracers in biology and medicine. CRC Press, Boca Raton, pp 107–185

    Google Scholar 

  25. Wardell JL (1994) Tin: inorganic chemistry. In: King RB (ed) Encyclopedia of inorganic chemistry, vol 8. Wiley, New York, pp 4159–4197

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Motaleb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motaleb, M.A., Alabdullah, E.S. & Zaghary, W.A. Synthesis, radiochemical and biological characteristics of 99mTc-8-hydroxy-7-substituted quinoline complex: a novel agent for infection imaging. J Radioanal Nucl Chem 287, 61–67 (2011). https://doi.org/10.1007/s10967-010-0818-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0818-8

Keywords

Navigation