Skip to main content
Log in

Enrichment factors and transfer coefficients from soil to rye plants by INAA

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

An extensive investigation of elemental levels in cereals and their cultivation soils has been going on across the main production areas of mainland Portugal, with a view to an eventual biofortification of major cultivars through agronomic practices. Cereals are an obvious choice as primary vehicles for food-supplementation programs, especially in countries where they definitely weigh in the dietary intake (like Portugal), and regions whose geographical and/or pedological features may account for nutrient deficiencies in typical diets. Mature rye plants (Secale cereale L.; roots and grains) and local soils were collected in the summer of 2009 from two regions of northern Portugal, and put through k 0-standardized, instrumental neutron activation analysis (k 0-INAA). Overall, the results (elemental concentrations, enrichment factors, transfer coefficients) seem to confirm an efficient uptake of elements from soil and their translocation to the aerial parts of the plants, notably to the ones that really matter in human nutrition (grains).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baize D (1997) Teneurs Totales en Éléments Traces Métalliques dans les Sols (France). INRA Éditions, Paris (in French)

    Google Scholar 

  2. Davies EB (ed) (1980) Applied soil trace elements. Wiley, New York

    Google Scholar 

  3. Shoji S, Nanzyo M, Dahlgren R (1993) Volcanic ash soils—genesis, properties and utilization. Elsevier, Amsterdam

    Google Scholar 

  4. Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  CAS  Google Scholar 

  5. White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593

    Article  Google Scholar 

  6. Graham RD, Welch RM, Saunders DA, Ortiz-Monasterio I, Bouis HE, Bonierbale M, de Haan S, Burgos G, Thiele G, Liria R, Meisner CA, Beebe SE, Potts MJ, Kadian M, Hobbs PR, Gupta RK, Twomlow S (2007) Nutritious subsistence food systems. Adv Agron 92:1–74

    Article  CAS  Google Scholar 

  7. White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  Google Scholar 

  8. Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  9. Bisbjerg B, Gissel-Nielsen G (1969) The uptake of applied selenium by agricultural plants: I. The influence of soil type and plant species. Plant Soil 31:287–298

    Article  CAS  Google Scholar 

  10. Shuman LM (1998) Micronutrient fertilizers. J Crop Prod 1:165–195

    Article  CAS  Google Scholar 

  11. Frossard E, Bucher M, Mächler F, Mozafar A, Hurrell R (2000) Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J Sci Food Agric 80:861–879

    Article  CAS  Google Scholar 

  12. Lyons GH, Lewis J, Lorimer MF, Holloway RE, Brace DM, Stangoulis JCR, Graham RD (2004) High-selenium wheat: agronomic biofortification strategies to improve human nutrition. Food Agric Environ 2:171–178

    Google Scholar 

  13. Hawkesford MJ, Zhao F-J (2007) Strategies for increasing the selenium content of wheat. J Cereal Sci 46:282–292

    Article  CAS  Google Scholar 

  14. Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  15. Lorenz K, Lee VA, Jackel SS (1977) The nutritional and physiological impact of cereal products in human nutrition. Crit Rev Food Sci 8:383–456

    Article  CAS  Google Scholar 

  16. Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947–958

    Article  CAS  Google Scholar 

  17. Koplík R, Borková M, Bicanová B, Polák J, Mestek O, Komínkova J (2006) Speciation analysis of elements in cereal flours by liquid chromatography—inductively coupled plasma mass spectrometry. Food Chem 99:158–167

    Article  Google Scholar 

  18. Ventura MG, Freitas MC, Pacheco AMG, van Meerten T, Wolterbeek HT (2007) Selenium content in selected Portuguese foodstuffs. Eur Food Res Technol 224:395–401

    Article  CAS  Google Scholar 

  19. Ventura MG (2008) Studies for the evaluation of selenium levels in typical constituents of Portuguese diets. PhD thesis, Technical University of Lisbon, Lisboa

  20. Prudêncio MI, Gouveia MA, Freitas MC, Chaves L, Marques AP (2000) Soil versus lichen analysis on elemental dispersion studies (North of Portugal). In: Smodĭs B (ed) Biomonitoring of atmospheric pollution (with emphasis on trace elements)—BioMAP (IAEA-TECDOC-1152). International Atomic Energy Agency, Vienna, pp 91–99

  21. Ventura MG, Freitas MC, Pacheco AMG (2005) Selenium levels in mainland Portugal. Water Air Soil Pollut 166:167–179

    Article  CAS  Google Scholar 

  22. De Corte F (1987) The k 0-standardization method—a move to the optimization of neutron activation analysis. Aggrégé thesis, Institute for Nuclear Sciences, University of Gent, Gent

  23. Freitas MC (1993) The development of k 0-standardized neutron activation analysis with counting using a low energy photon detector. PhD thesis, Institute for Nuclear Sciences, University of Gent, Gent

  24. De Corte F (2001) The standardization of standardless NAA. J Radioanal Nucl Chem 248:13–20

    Article  Google Scholar 

  25. Blaauw M (2007) Software for single-comparator instrumental neutron activation analysis—the k 0-IAEA program manual for version 3.21. International Atomic Energy Agency, Vienna, and Delft University of Technology, Delft, http://www.tudelft.nl/live/binaries/8bba6542-6c38-468d-8f15-b98f0fc23a70/doc/k0IAEAmanual.pdf. Accessed 10 June 2010

  26. Weizhi T, Bangfa N, Pingsheng W, Huiling N, Lei C, Yangmei Z (2001) Intercomparison and certification of some Chinese and international food and biological matrix CRMs for several uncertified ultratrace elements by NAA. J Radioanal Nucl Chem 249:25–28

    Article  Google Scholar 

  27. Reimann C, Niskavaara H, Kashulina G, Filzmoser P, Boyd R, Volden T, Tomilina O, Bogatyrev I (2001) Critical remarks on the use of terrestrial moss (Hylocomium splendens and Pleurozium schreberi) for monitoring of airborne pollution. Environ Pollut 113:41–57

    Article  CAS  Google Scholar 

  28. Cakmak I, Ekiz H, Yilmaz A, Torun B, Köleli N, Gültekin I, Alkan A, Eker S (1997) Differential response of rye, triticale, bread and durum wheats to zinc deficiency in calcareous soils. Plant Soil 188:1–10

    Article  CAS  Google Scholar 

  29. Cakmak I, Derici R, Torun B, Tolay I, Braun HJ, Schlegel R (1997) Role of rye chromosomes in improvement of zinc efficiency in wheat and triticale. Plant Soil 196:249–253

    Article  CAS  Google Scholar 

  30. Erenoglu B, Cakmak I, Römheld V, Derici R, Rengel Z (1999) Uptake of zinc by rye, bread wheat and durum wheat cultivars differing in zinc efficiency. Plant Soil 209:245–252

    Article  CAS  Google Scholar 

  31. Zoller WH, Gladney ES, Duce RA (1974) Atmospheric concentrations and sources of trace metals at the South Pole. Science 183:199–201

    Article  Google Scholar 

  32. Lantzy RJ, Mackenzie FT (1979) Atmospheric trace metals: global cycles and assessment of man’s impact. Geochim Cosmochim Acta 43:511–525

    Article  CAS  Google Scholar 

  33. Bargagli R, Brown DH, Nelli L (1995) Metal biomonitoring with mosses: procedures for correcting for soil contamination. Environ Pollut 89:169–175

    Article  CAS  Google Scholar 

  34. Manoli E, Voutsa D, Samara C (2002) Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmos Environ 36:949–961

    Article  CAS  Google Scholar 

  35. Cao L, Tian W, Ni B, Zhang Y, Wang P (2002) Preliminary study of airborne particulate matter in a Beijing sampling station by instrumental neutron activation analysis. Atmos Environ 36:1951–1956

    Article  CAS  Google Scholar 

  36. Lawson DR, Winchester JW (1967) A standard crustal aerosol as a reference for elemental enrichment factors. Atmos Environ 13:925–930

    Google Scholar 

  37. Lawson DR, Winchester JW (1978) Sulfur and crustal reference elements in nonurban aerosols from Squaw Mountain, Colorado. Environ Sci Technol 12:716–721

    Article  CAS  Google Scholar 

  38. Reheis MC, Budahn JR, Lamothe PJ (1979) Geochemical evidence for diversity of dust sources in the southwestern United States. Geochim Cosmochim Acta 66:1569–1587

    Article  Google Scholar 

  39. Chiarenzelli JR, Aspler LB, Dunn C, Cousens B, Ozarko DL, Powis KB (2001) Multi-element and rare earth element composition of lichens, mosses, and vascular plants from the Central Barrenlands, Nunavut, Canada. Appl Geochem 16:245–270

    Article  CAS  Google Scholar 

  40. Bergamaschi L, Rizzio E, Valcuvia MG, Verza G, Profumo A, Gallorini M (2002) Determination of trace elements and evaluation of their enrichment factors in Himalayan lichens. Environ Pollut 120:137–144

    Article  CAS  Google Scholar 

  41. Freitas MC, Justino J, Grego J (1995) Neutron activation analysis of some biological environmental materials. Sci Total Environ 173(174):1–5

    Google Scholar 

  42. Waliszewski SM, Carvajal O, Infanzon RM, Trujillo P, Aguirre AA, Maxwell M (2004) Levels of organochlorine pesticides in soils and rye plant tissues in a field study. J Agric Food Chem 52:7045–7050

    Article  CAS  Google Scholar 

  43. Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  44. Zikovsky L (2006) Determination of uranium in food in Quebec by neutron activation analysis. J Radioanal Nucl Chem 267:695–697

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the Portuguese Foundation for the Science and the Technology (Fundação para a Ciência e a Tecnologia—FCT; Portugal) through research contract PTDC/QUI/65618/2006—SELENIUM is gratefully acknowledged. The Authors are also indebted to one anonymous Reviewer for his/her constructive remarks and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Freitas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galinha, C., Freitas, M.C. & Pacheco, A.M.G. Enrichment factors and transfer coefficients from soil to rye plants by INAA. J Radioanal Nucl Chem 286, 583–589 (2010). https://doi.org/10.1007/s10967-010-0803-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0803-2

Keywords

Navigation