Journal of Radioanalytical and Nuclear Chemistry

, Volume 286, Issue 3, pp 625–629 | Cite as

Effects of gamma irradiation on poly(ethylene isophthalate)

  • Mario Mariani
  • Giovanni Consolati
  • Fiorenza Quasso
  • Nadia Lotti
  • Andrea Munari
  • Michele Galletta
  • Elena Macerata


Radiation methods are largely used for polymerisation and polymer modification, since irradiation induces transformations in the structure of materials which can be exploited to improve their performance. On the other hand, combined action of ionising radiation and oxygen may lead to degradation of the polymer, with worsening of properties such as mechanical strength or electrical insulation resistance. Therefore, the change of the chemical and physical properties of polymers under irradiation is a dynamic topic of research. In this work there are discussed data on the physical features of a polyester, poly(ethylene isophthalate) (PEI), subjected to gamma irradiation up to 1 MGy. PEI is a semicrystalline polymer with a structure similar to polyethylene terephthalate. Viscosity and differential scanning calorimetry measurements were carried out which allowed the monitoring of changes in the structure in terms of variations in the molecular weight, as well as of the percentage crystallinity depending on the dose. Furthermore, positron annihilation lifetime spectroscopy supplied information on the free volume present in the amorphous phase of the irradiated polymer.


Gamma irradiation Poly(ethylene isophthalate) Polyester Viscometry Differential scanning calorimetry Positron annihilation lifetime spectroscopy 



The authors are grateful to Mr. Fabio Pregnolato for his precious support at the Gammatom Irradiation Facility. The authors are also grateful to Mr. Mirko Da Ros and Mr. Marco Giola for their support to the experimental activity.


  1. 1.
    Wood RJ, Pikaev AK (1994) Applied radiation chemistry radiation processing. Wiley, New YorkGoogle Scholar
  2. 2.
    Clough RL, Shalaby WS (1991) Radiation effect on polymers. American Chemical Society, Washington, DCCrossRefGoogle Scholar
  3. 3.
    Cheng S, Kerluke DR (2003) Radiation processing for modification of polymers. Annual technical conference of the society of plastic engineering (ANTEC). IBA, Advanced Materials Division, 7695 Formula Place, San Diego, CAGoogle Scholar
  4. 4.
    Woods RJ (2000) J Radioanal Nucl Chem 243:255CrossRefGoogle Scholar
  5. 5.
    Dongyuan L, Lianshui Z, Yaqi W, Wenxiu C (1987) Radiat Phys chem 29:175Google Scholar
  6. 6.
    Buchalla R, Schuttler C, Bogl KW (1995) Radiat Phys chem 46:579CrossRefGoogle Scholar
  7. 7.
    Ahmed S, Basfar AA, Abdel Aziz MM (2000) Polym Degrad Stab 67:319CrossRefGoogle Scholar
  8. 8.
    Briskman BA, Klinspont ER, Tupikov VI (1999) Nucl Instr Meth Phys Res B 151:427CrossRefGoogle Scholar
  9. 9.
    Chapiro A (1962) Radiation chemistry of polymeric systems. Interscience, New YorkGoogle Scholar
  10. 10.
    Jellinek HHG (1978) Aspects of degradation and stabilization of polymers. Elsevier, AmsterdamGoogle Scholar
  11. 11.
    Babic D, Stannett VT (1987) Radiat Phys chem 30:183Google Scholar
  12. 12.
    Survey S (1999) Radiat Phys chem 56:375CrossRefGoogle Scholar
  13. 13.
    Campbell F (1981) Radiat Phys chem 25:389Google Scholar
  14. 14.
    Dole M (1973) The radiation chemistry of macromolecules, 2nd edn. Academic Press, New York, pp 137–166Google Scholar
  15. 15.
    Finelli L, Fiorini M, Siracusa V, Lotti N, Munari A (2004) J Appl Polym Sci 92:186–193CrossRefGoogle Scholar
  16. 16.
    Mark HF, Bikales NM et al (1990) Encyclopedia of polymer science and engineering, vol 12, 2nd edn. Wiley, New York, p 226Google Scholar
  17. 17.
    Coleman PG (2003) In: Jean YC, Mallon PE, Schrader DM (eds) Positron and positronium chemistry. World Scientific, Singapore, p 50Google Scholar
  18. 18.
    Kansy J (1996) Nucl Instrum Methods A 374:235CrossRefGoogle Scholar
  19. 19.
    Mariani M, Ravasio U, Varoli V, Consolati G, Faucitano A, Buttafava A (2007) Radiat Phys chem 76:1385–1389CrossRefGoogle Scholar
  20. 20.
    Righetti MC, Tombari E, Aingiuli M, Di Lorenzo ML (2007) Thermochim Acta 462:15CrossRefGoogle Scholar
  21. 21.
    Xu H, Ince S, Cebe P (2003) J Polym Sci B 41:3026CrossRefGoogle Scholar
  22. 22.
    Tao SJ (1972) J Chem Phys 56:5499CrossRefGoogle Scholar
  23. 23.
    Eldrup M, Lightbody D, Sherwood NJ (1981) Chem Phys 63:51CrossRefGoogle Scholar
  24. 24.
    Nakanishi H, Wang YY, Jean YC (1988) In: Sharma SC (ed) Positron annihilation studies of fluids. World Scientific, Singapore, p 292Google Scholar
  25. 25.
    Suzuki T, He C, Shantarovich V, Kondo K, Hamada E, Matso M, Ma L, Ito Y (2003) Radiat Phys chem 66:161CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Mario Mariani
    • 1
  • Giovanni Consolati
    • 2
  • Fiorenza Quasso
    • 2
  • Nadia Lotti
    • 3
  • Andrea Munari
    • 3
  • Michele Galletta
    • 1
  • Elena Macerata
    • 1
  1. 1.Dipartimento di EnergiaSezione di Ingegneria Nucleare, CeSNEF, Politecnico di MilanoMilanItaly
  2. 2.Dipartimento di FisicaPolitecnico di MilanoMilanItaly
  3. 3.Dipartimento di Chimica Applicata e Scienza dei MaterialiUniversità di BolognaBolognaItaly

Personalised recommendations