Journal of Radioanalytical and Nuclear Chemistry

, Volume 286, Issue 3, pp 693–697 | Cite as

Solvent extraction of americium by imidodiphosphates and diimidotriphosphates

  • A. Tokárová
  • O. Navrátil
  • P. Sládek


Solvent extraction was described for determining of the americium content in the liquid samples. Arylesters of imidodiphosphoric, imidothiodiphosphoric, imidodithiodiphosphoric acids and tetraphenylimidodithiodiphosphine are used as representatives of bidentate organophosphoric extractants. From the group of tridentate agents, pentaphenyldiimidotriphosphate, was used. The extraction properties of tetraphenyl imidodiphosphates and their sulphur analogues for trivalent americium in 0.1 mol L−1 HNO3 into toluene also in the presence of tri-n-octylphosphine oxide (TOPO) were investigated. The dependences of equilibrium ratios of the americium on analytical or equilibrium concentration of chelating agents, pH, initial concentration of nitric acid and initial concentration of TOPO were studied. The structures of the complexes in the organic phase were determined and the values of extraction constants were calculated. The extracted species were AmA3, AmA3 (HA), the addition of TOPO induced synergistic extraction of AmA3 TOPO. The utilization of sulphur analogues was marginal.


Solvent extraction Americium Imidodiphosphorus extractants Extraction constants Synergism 


  1. 1.
    Runde WH, Schulz WW (2006) In: Morss LR, Edelstein NM, Fuger J (eds) The chemistry of the actinide and transactinide elements, 3rd edn. Springer, DordrechtGoogle Scholar
  2. 2.
    Xing YY, Xin HJ, Lin HZ, Qun SW, Min WG, Bin TH, Bin ZW, Rong WX, Gen ZH, Yu D, Dong S, Xiang LF, Ju ZY (2004) J Radioanal Nucl Chem 261:365–374CrossRefGoogle Scholar
  3. 3.
    Makrlík E, Vaňura P, Selucký P (2008) J Radioanal Nucl Chem 275:309–312CrossRefGoogle Scholar
  4. 4.
    Chen J, Wang SW (2007) J Radioanal Nucl Chem 273:59–63CrossRefGoogle Scholar
  5. 5.
    Karande AP, Mallik GK, Panakkal JP, Kamath HS, Bhargava VK, Mathur JN (2003) J Radioanal Nucl Chem 256:185–189CrossRefGoogle Scholar
  6. 6.
    Retegan T, Ekberg CH, Dubois I, Fermvik A, Sharnemark G, Wass TJ (2007) Solv Extr Ion Exch 25:417–431CrossRefGoogle Scholar
  7. 7.
    Pai SA, Lohithakshan KV, Mithapara PD, Aggarwal SK (2000) J Radioanal Nucl Chem 45:623–628CrossRefGoogle Scholar
  8. 8.
    Veeraraghavan R, Hon NS, Page AG (2004) J Radioanal Nucl Chem 261:69–72CrossRefGoogle Scholar
  9. 9.
    Mohapatra PK, Pandey AK, Manchanda VK (1999) Radiochim Acta 84:147–152Google Scholar
  10. 10.
    Otu EO, Chiarizia R, Rickert PG, Nash KL (2002) Solv Extr Ion Exch 20:607–632CrossRefGoogle Scholar
  11. 11.
    Xu Q, Wu J, Zhang L, Yang Y (2007) J Radioanal Nucl Chem 273:235–245CrossRefGoogle Scholar
  12. 12.
    Sládek P, Navrátil O, Tokárová A (2006) Czechoslov J Phys 56:SD 525–531Google Scholar
  13. 13.
    Navrátil O, Sládek P, Tokárová A, Herrmann E, Nouaman M (1997) Coll Czechoslov Chem Commun 62:620–625CrossRefGoogle Scholar
  14. 14.
    Navrátil O, Tokárová A, Sládek P, Herrmann E (1997) Coll Czechoslov Chem Commun 62:375–386CrossRefGoogle Scholar
  15. 15.
    Sládek P, Navrátil O, Nouaman M, Gronwald A, Herrmann E (1995) Solv Extr Res Dev Jpn 2:1–7Google Scholar
  16. 16.
    Herrmann E, Nouaman M, Žák Z, Grossmann G, Ohms G (1994) Z Anorg Allg Chem 620:1879–1888CrossRefGoogle Scholar
  17. 17.
    Wharf RM, Choppin GR, Pruett DJ (1990) Solv Extr Ion Exch 8:615–627CrossRefGoogle Scholar
  18. 18.
    Bacher W, Keller C (1973) J Inorg Nucl Chem 35:2945–2956CrossRefGoogle Scholar
  19. 19.
    Tokárová A (1997) Thesis, University of Defence, VyškovGoogle Scholar
  20. 20.
    Herrmann E, Navrátil O, Lang NX, Suzova J, Khalkin VA (1988) ISEC’ 88, Moscow, pp 141–144Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.NBC InstituteUniversity of DefenceVyškovCzech Republic

Personalised recommendations