Skip to main content
Log in

Photo- and radiation-induced preparation of nanocrystalline copper and cuprous oxide catalysts

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Spherical copper nanoparticles have been prepared by photo- or radiation-induced reduction of aqueous solutions containing 10−3 mol.dm−3 copper sulphate or formate, 1.3 mol.dm−3 propan-2-ol and polyvinyl alcohol as a stabilizer. Increase of initial copper concentration to 10−2 mol.dm−3 resulted in formation of different reaction product—octahedral cuprous oxide nanoparticles. Solutions were irradiated by means of electron beam, 60Co γ rays (dose rate 70 Gy.h−1) or by 400 W medium-pressure mercury lamp and were characterised by UV-Vis spectrophotometry, X-Ray Powder Diffraction, TEM and SEM. Pink to violet colour of colloidal copper solutions corresponded to measured copper surface plasmon band at circa 580 nm and has been found to be very sensitive to oxygen, which causes dissolution of particles. Therefore, the influence of purging by nitrogen gas prior to irradiation was thoroughly examined and has been found to only hinder, not alter irradiation effects. Moreover, the evolution of absorption spectrum of colloidal copper solution in contact with air has been measured, revealing interesting non-monotonous dependence on the air exposure time, probably caused by formation of protective oxide layer. Catalytic activity of prepared cuprous oxide has been measured by catalytic decomposition of hydrogen peroxide and has been found to be higher or comparable to commercial cuprous oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Belloni J (2006) Catal Today 113:141–156

    Article  CAS  Google Scholar 

  2. Rostovshchikova TN, Smirnov VV, Kozhevin VM, Yavsin DA, Zabelin MA, Yassievich IN, Gurevich SA (2005) Appl Catal A 296:70–79

    Article  CAS  Google Scholar 

  3. Uhm YR, Park JH, Kim WW, Lee MK, Rhee CK (2007) Mater Sci Eng, A 449–451:817–820

    Google Scholar 

  4. Wang X, Han K, Wan F, Gao Y, Jiang K (2008) Mater Lett 62:3509–3511

    Article  CAS  Google Scholar 

  5. Saito M, Yasukawa K, Umeda T, Aoi Y (2008) Opt Mater 30:1201–1204

    Article  CAS  Google Scholar 

  6. Zhu HT, Zhang CY, Yin YS (2004) J Cryst Growth 270:722–728

    Article  CAS  Google Scholar 

  7. Kanninen P, Johans C, Merta J, Kontturi K (2008) J Colloid Interface Sci 318:88–95

    Article  CAS  Google Scholar 

  8. Khatouri J, Mostafavi M, Amblard J, Belloni J (1992) Chem Phys Lett 191:351–356

    Article  CAS  Google Scholar 

  9. Zhou R, Wu X, Hao X, Zhou F, Li H, Rao W (2008) Nucl Instrum Methods Phys Res B 266:599–603

    Article  CAS  Google Scholar 

  10. Kapoor S, Gopinathan C (1998) Radiat Phys chem 53:165–170

    Article  CAS  Google Scholar 

  11. Dey GR (2005) Radiat Phys chem 74:172–184

    CAS  Google Scholar 

  12. Joshi SS, Patil SF, Iyer V, Mahumani S (1998) Nanostruct Mater 10:1135–1144

    Article  CAS  Google Scholar 

  13. Loginov AV, Gorbunova VV, Boitsova TB (2002) J Nanopart Res 4:193–205

    Article  CAS  Google Scholar 

  14. Giuffrida S, Costanzo LL, Ventimiglia G, Bongiorno C (2008) J Nanopart Res 10:1183–1192

    Article  CAS  Google Scholar 

  15. Kapoor S, Palit DK, Mukherjee T (2002) Chem Phys Lett 355:383–387

    Article  CAS  Google Scholar 

  16. Zhu Y, Qian Y, Zhang M, Chen Z, Xu D, Yang L, Zhou G (1994) Mater Res Bull 29:377–383

    Article  CAS  Google Scholar 

  17. He P, Shen X, Gao H (2005) J Colloid Interface Sci 284:510–515

    Article  CAS  Google Scholar 

  18. Belloni J, Mostafavi M, Remita H, Marignier JL, Delcourt MO (1998) New J Chem 22:1239–1255

    Article  CAS  Google Scholar 

  19. Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) J Phys Chem Ref Data 17:513–886

    CAS  Google Scholar 

  20. Ershov BG, Janata E, Michaelis M, Henglein A (1991) J Phys Chem 95:8996–8999

    Article  CAS  Google Scholar 

  21. Buxton GV, Green JC (1978) J Chem Soc. Faraday Trans 74:697–714

    Article  CAS  Google Scholar 

  22. Mira Freiberg, Meyerstein D (1980) J Chem Soc. Faraday Trans 76:1825–1837

    Article  Google Scholar 

  23. Múčka V (1977) Collect Czech Chem Commun 42:2074–2079

    Google Scholar 

  24. ICDD PDF-2 database (1999, version 2.02)

Download references

Acknowledgments

This research has been supported by grants MSM 6840770040 and SGS 10/095/OHK4/1T/14. We would also like to thank Mojmír Čamra and Tesla V. T. Mikroel for facilitating electron beam irradiation and Ivo Jakubec from Institute of Inorganic Chemistry, The Academy of Sciences of The Czech Republic for TEM and SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Bárta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bárta, J., Pospíšil, M. & Čuba, V. Photo- and radiation-induced preparation of nanocrystalline copper and cuprous oxide catalysts. J Radioanal Nucl Chem 286, 611–618 (2010). https://doi.org/10.1007/s10967-010-0748-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0748-5

Keywords

Navigation