Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 286, Issue 3, pp 801–806 | Cite as

Electro-fluid analysis of a molten-salt electrorefiner with rotating cruciform anode baskets

  • K. R. Kim
  • S. Y. Choi
  • D. H. Ahn
  • S. Paek
  • H. S. Lee
  • I. S. Hwang
Article

Abstract

A computational fluid dynamics (CFD)-based multiphysics model of a molten-salt electrorefiner is presented for the computational electro-fluid analysis. A target model of the electrorefining cell presented here has a structure arranged concentrically with the cathode annulus surrounding a rotating cruciform anode inside it. This comprehensive approach of a multiphysics model solves the convective and diffusive transport of ionic uranium and allows for a prediction of the concentration present in the LiCl–KCl eutectic electrolyte between the electrodes at a current driven condition. The coupling of the local overpotential distribution and uranium concentration gradient makes it possible to predict the local current density distribution at the electrode surfaces.

Keywords

Uranium Molten-salt electrorefiner Pyrochemical nuclear waste treatment Multiphysics model Computational fluid dynamics 

Notes

Acknowledgments

This work was supported by Nuclear Research & Development Program of the National Research Foundation (NRF) grant funded by the Korean government (MEST).

References

  1. 1.
    IAEA (2008) Spent fuel reprocessing options, IAEA-TECDOC-1587, p 139Google Scholar
  2. 2.
    Li SX, Sofu T, Johnson TA, Laug DV (2000) J New Mat Electrochem Syst 3:259Google Scholar
  3. 3.
    Ahluwalia RK, Hua TQ, Geyer HK (2000) Nucl Tech 133:103Google Scholar
  4. 4.
    Li SX, Sofu T, Wigel, RA (1998) Experimental observations to the electrical field for electrorefining of spent nuclear fuel in the mark-IV electrorefiner, 193rd meeting of the electrochemical society, San Diego, CA, May 3–8Google Scholar
  5. 5.
    Kim KR et al (2009) J Radioanal Nucl Chem 282:449CrossRefGoogle Scholar
  6. 6.
    Bae JD, Yi KW, Park BG, Hwang IS, Lee HY (2005) Development of an electrochemical-hydrodynamic model for electrorefining process, global 2005, Tsukuba, Japan, October 9–13Google Scholar
  7. 7.
    Palmiotti G, Cahalan J, Pfeiffer P, Sofu T, Taiwo T, Wei T, Yacout A, Yang W, Siegel A, Insepov Z, Anitescu M, Hovland P, Pereira C, Regalbuto M, Copple J, Williamsonet M (2005) Requirements for advanced simulation of nuclear reactor and chemical separation plants, ANL-AFCI-168, p 12Google Scholar
  8. 8.
    ANSYS CFX-12.0 Solver (2009) Canonsburg, USA/ANSYS, http://www.ansys.com. Accessed 17 Dec 2009
  9. 9.
    Pickett DJ (1979) Electrochemical reactor design, 2nd edn. American Elsevier, New YorkGoogle Scholar
  10. 10.
    Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  11. 11.
    KANG YH (1999) Pyrometallurgical data book, Korea atomic energy research institute report, KAERI/TS-110/99Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • K. R. Kim
    • 1
  • S. Y. Choi
    • 2
  • D. H. Ahn
    • 1
  • S. Paek
    • 1
  • H. S. Lee
    • 1
  • I. S. Hwang
    • 2
  1. 1.Korea Atomic Energy Research InstituteYuseong-gu, DaejeonKorea
  2. 2.Seoul National UnivSeoulKorea

Personalised recommendations