Journal of Radioanalytical and Nuclear Chemistry

, Volume 287, Issue 1, pp 247–254 | Cite as

Adsorption of 85Kr radioactive inert gas into hardening mixtures



Changes in volumetric activity of 85Kr radioactive inert gas take place in the atmosphere: it has increased by around 50% during the past 15 years. The main source of such gas is the operation of nuclear power plants and spent nuclear fuel reprocessing plants. 85Kr as an inert gas spreads throughout the entire atmosphere and its ionizing radiation may result in changes of atmospheric electric phenomena. Therefore it is necessary to control 85Kr emission into the atmosphere. However, there is no effective method for this as inert gases, under normal conditions, can hardly be adsorbed in different adsorbents and stored in special containers for a long period of time. This paper tries to show the possibility of keeping 85Kr longer within the adsorbent by changing its aggregate state: gas is adsorbed into liquid adsorbent and desorption takes place from solid adsorbent. For this purpose, an epoxy resin is used which, after adding a special hardener at room temperature, turns into a solid material with density of around 1.2 × 103 kg m−3. As a result of sample blending with substances which contribute to better solubility of 85Kr, diffusion coefficient of this gas (i.e. desorption speed) changes within the adsorbent in the solid state.


Krypton-85 Volumetric activity Adsorption Time of desorption 



Experimental research has been started at the Institute of Physics. Authors express their sincere thanks to the administration of the Institute of Physics for the material facilities, and also senior engineer Gintas Kandrotas and technician Jurijus Podoroga for their contribution in preparing the samples and conducting the research.


  1. 1.
  2. 2.
    Butkus D (1999) Radioactive inert gases of the artificial origin in the environment: scientific investigations and technical solutions. Summary of the research report presented for habilitation, 47 ppGoogle Scholar
  3. 3.
    Styra B, Butkus D (1990) Geophysical problems of Krypton-85 in the atmosphere. Hemisphere Publishing Corporation, New York, 153 ppGoogle Scholar
  4. 4.
    Winger K, Feichter J, Kalinowski MB, Sartorius H, Schlosser C (2005) A new compilation of the atmospheric Krypton-85 inventories from 1945 to 2000 and its evaluation in a global transport model. J Environ Radioact 80:183–215CrossRefGoogle Scholar
  5. 5.
    Smith K, Murray M, Wong J, Long SC, Colgan PA, Rafferty B (2005) Krypton-85 and other airborne radioactivity measurements throughout Ireland. Radioprotection 40(1):5457–5463. doi: 10.1051/radiopro:2005s1-067 Google Scholar
  6. 6.
    Bилгeлмoвa Л, Toмaшeк M, Двopжaк З, Бyткyc Д, Зeмкaюc К, Cтыpo Б (1991) Oпpeдeлeниe aтмocфepныx кoнцeнтpaций \( {}^{85}{\text{Kr}} \) в Пpaгe и в Bильнюce [Vilgelmova L, Tomashek M, Dvorzhak Z, Butkus D, Zemkayus K, Styro B (1991) Determination of atmospheric concentrations of 85Kr in Prague and Vilnius]. Физикa aтмocфepы [Atmos Phys] 15:21–29Google Scholar
  7. 7.
    Achkasov SK, Gudkov AN, Zakharov OV, Krylov AYu, Nekrasov VM, Novichkov VP, Serbulov YuA, Ushakova NP, Zadorozhnyj YuA (1991) Monitoring the contamination of the atmosphere by 85Kr. Atomnaya Energiya 70(4):234–239Google Scholar
  8. 8.
    Dubasov YV, Okunev NS (2010) Xenon and Krypton-85 radionuclides monitoring in the northwest region. Pure Appl Geophys 167(4–5):487–498CrossRefGoogle Scholar
  9. 9.
    Mamoshima N, Inoue F, Sugihara S, Shimada J, Taniguchi M (2010) An improved method for 85Kr analysis by liquid scintillation counting and its application to atmospheric 85Kr determination. J Environ Radioact 101(8):615–621CrossRefGoogle Scholar
  10. 10.
    Kalinowski MB (1997) Measurements and modelling of atmospheric Krypton-85 as indicator for plutonium separation. International Workshop on the Status of Measurement Techniques for the Identification of Nuclear Signatures, GeelGoogle Scholar
  11. 11.
    Kalinowski M, Feichter J, Ross O (2006) Atmospheric Krypton-85 transport modeling for verification purposes. INESAP Inf Bull N 27:17–20Google Scholar
  12. 12.
    Takayasu M, Jida T, Watanabe H, Takeishi M, Yamamoto A (2008) Simulation of the atmospheric dispersion of 85Kr from a reprocessing plant over a coastal area. J Radioanal Nucl Chem 275(1):43–54CrossRefGoogle Scholar
  13. 13.
    Loosli HH (1984) Haben künstlich erzeugte Raionuclide wie \( {}^{ 8 5}{\text{Kr,}}\;{}^{ 1 4}{\text{C}} \) und \( {}^{3}{\text{H}} \) mit der Luftionisation, mit dem sauren Regen und dem aldsterben etwas zu tun? Separatdruck ans dem SVA Bulletin N3:21–31Google Scholar
  14. 14.
    Harrison RG, ApSimon HM (1994) Krypton-85 pollution and atmospheric electricity. Atmos Environ 28(4):637–648CrossRefGoogle Scholar
  15. 15.
    Butkus D, Krenevičius R (1996) Influence of radioactive noble gases on the air ionization variation in the environment of nuclear power plants and nuclear fuel reprocessing plants. Atmos Phys 18(2):43–49Google Scholar
  16. 16.
    Butkus D (1998) Atmospheric ionization caused by ionizing radiation of radioactive noble gas. Aplinkos Inžinerija 6(4):128–132Google Scholar
  17. 17.
    Ulevičius V, Butkus D, Plauškaitė K, Girgždys A, Byčenkienė S, Špirkauskaitė N (2009) Impact of Krypton-85 beta radiation on aerosol particle formation and transformation. Lith J Phys 49(4):471–478CrossRefGoogle Scholar
  18. 18.
    Бyткyc, Дoнaтac. Paдиoaктивныe инepтныe гaзы иcкyccтвeoгo пpoиcxoждeния в oкpyжaющeй cpeдe: нayчныe иccлeдoвaния и тeчничecкиe peшeния. Гaбилитaциoннaя paбoтa. Bильнюc [Butkus, D. Radioactive inert gases of the artificial origin in the environment: scientific investigations and technical solutions. Habilitation paper. Vilnius], 1999, 166 cGoogle Scholar
  19. 19.
    Styra D, Čiučelis A, Usovaitė A, Damauskaitė J (2008) On possibility of short-term prognosis of cyclonic activity after-effects in Vilnius by variation of hard cosmic ray flux. J Environ Eng Landsc Manag 16(4):159–167CrossRefGoogle Scholar
  20. 20.
    Yamamoto T, Tsukui K, Ootsuka N (1984) Storage of Krypton-85 by adsorption method. J Nucl Sci Technol 21(5):372–380CrossRefGoogle Scholar
  21. 21.
    Mitev K, Pressyanov D, Dimitrova I, Georgiev S, Boshkova T, Zhivkova V (2009) Measurement of Krypton-85 in water by absorption in polycarbonates. Nucl Instrum Methods Phys Res A 602(3):491–494. ISSN 0168-9002Google Scholar
  22. 22.
    Galamboš M, Kufčakova J, Rajec P (2009) Sorption of stroncium on Slovak betonites. J Radioanal Nucl Chem 281(3):347–357CrossRefGoogle Scholar
  23. 23.
    Galamboš M, Paučova V, Kufčakova J, Rosskopfova O, Rajec P, Adamcova R (2010) Cesium sorption on betonites and montmorillonite K10. J Radioanal Nucl Chem 284(1):55–64CrossRefGoogle Scholar
  24. 24.
    Gao L, Yang Z, Shi K, Wang X, Guo Z, Wu W (2010) U(VI) sorption on kaolinite: effects of pH, U(VI) concentration and oxyanions. J Radioanal Nucl Chem 284(3):519–526CrossRefGoogle Scholar
  25. 25.
    Mapтиcoн ЛК, Maлoв ЮИ. Дифepeнциaльныe ypaвнeния мaтeмaтичecкoй физики. 2-e издaниe. Mocквa: Издaтeльcтвo MГTУ им. H.E. Бayмaнa [Martison LK, Malov YuI. Differential equations of mathematical physics], 2002, 368 c. ISBN 5-7038-1911-3Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.Department of Environment ProtectionVilnius Gediminas Technical UniversityVilniusLithuania
  2. 2.Department of Mathematical ModellingVilnius Gediminas Technical UniversityVilniusLithuania

Personalised recommendations