Skip to main content
Log in

Quinolinephosphomolybdate as ion exchanger: synthesis, characterization, and application in separation of 90Y from 90Sr

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

An inorganic ion exchanger, quinolinephosphomolybdate has been synthesized and characterized by elemental analysis, infrared (IR) and X-ray diffraction (XRD) spectroscopy. This compound is highly stable toward thermal, chemical and radiation dose. This has been employed in the separation of carrier-free 90Y from its parent 90Sr from an equilibrium mixture. The absorbed daughter was recovered by using 0.0284 mol L−1 ascorbic acid solutions at pH 5.0 as eluting agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Qaim SM (2003) Cyclotron production of medical radionuclides. In: Vertes A, Nagy S, Klecsar Z (eds) Handbook of nuclear chemistry, vol 47. Kluwer, The Netherlands

  2. Schlyer DJ (2004) Pet tracers and radiochemistry. Ann Acad Med 33:146–150

    CAS  Google Scholar 

  3. Machula HJ (1999) Clinical applications of positron emitting radio pharmaceuticals. In: Charles BS (ed) Textbook of radio pharmacy, vol 31. Gordon & Breach Science, The Netherlands

  4. Perlman SB, Stone CK (1998) Clinical positron emission tomography. In: Wilson MA (ed) Textbook of nuclear medicine, vol 331. Lippincott-Raven, Philadelphia

  5. Stocklin G, Qaim SM, Rosch F (1995) The impact of radioactivity on medicine. Radiochim Acta 70(71):249–272

    Google Scholar 

  6. Herzog H, Rosch F, Stocklin G, Lueders C, Qaim SM, Feinendegen LE (1993) Measurement of pharmacokinetics of yttrium-86 radiopharmaceuticals with PET and radiation dose calculation of analogous yttrium-90 radiotherapeutics. J Nucl Med 34:2222–2226

    CAS  Google Scholar 

  7. Rosch F, Herzog H, Neumaier B (1996) Quantitative whole body pharmacokinetics of yttrium-86 complexes with PET and radiation dose calculation of analogous yttrium-90 radiopharmaceuticals. In: Stelson AT, Stabin MG, Sparks RB (eds) Conference proceedings of the sixth international radiopharmaceutical, vol 101. Dosimetry symposium, Gatlinburg TN

  8. Rosch F, Herzog H, Plag C, Neumaier B, Braun U, Muller-Gartner HW, Stocklin G (1996) Radiation doses of yttrium-90 citrate and yttrium-90 EDTMP as determined via analogous yttrium-86 complexes and positron emission tomography. Eur J Nucl Med 23:958–966

    Article  CAS  Google Scholar 

  9. Rosch F, Herzog H, Stolz B, Brockmann J, Kohle M, Muhlensiepen H, Marbach P, Muller-Gartner HW (1999) Uptake kinetics of the somatostatin receptor ligand [86Y]DOTA-d Phe1-Tyr3-octreotide ([86Y]SMT487) using positron emission tomography in non-human primates and calculation of radiation doses of the 90Y-labelled analogue. Eur J Nucl Med 26:358–366

    Article  CAS  Google Scholar 

  10. Brockmann J, Rosch F, Herzog H, Muhlensiepen H, Kohle M, Stolz B, Marbach P, Muller-Gartner HW (1997) Complexation, in vivo-stability, blood clearance and excretion kinetics of 86Y-DOTATyr3-octreotide in baboons. J Labelled Compd Radiopharm 39:468–470

    Google Scholar 

  11. Finn RD, McDevitt M, Ma D (1999) Applications of accelerators in research and industry. In: Proceedings of the 15th international conference, vol 991. AIP, NewYork

  12. Forster GJ, Engelbach M, Brockmann J, Reber H, Buchholz HG, Macke HR, Rosch F, Herzog H, Bartenstein P (2001) Preliminary data on biodistribution and dosimetry for therapy planning of somatostatin receptor positive tumours: comparison of 86Y-DOTATOC and 111In-DTPA-octreotide. Eur J Nucl Med 28:1743–1750

    Article  CAS  Google Scholar 

  13. Lovqvist A, Humm JL, Sheikh A, Finn RD, Koziorowski J, Ruan S, Pentlow KS, Jungbluth A, Welt S, Lee FT, Brechbiel MW, Larson SM (2001) PET imaging of 86Y-labeled anti-Lewis Y-monoclonal antibodies in a nude mouse model: comparison between 86Y and 111In radiolabels. J Nucl Med 42:1281–1287

    CAS  Google Scholar 

  14. Avila-Rodrigueza MA, Nye JAA, Nickles RJ (2008) Production and separation of non-carrier-added 86Y from enriched 86Sr targets. Appl Radiat Isot 66:9–13

    Article  Google Scholar 

  15. Malja S, Schomacker K, Malja E (2000) Preparation of 90Y by the 90Sr–90Y generator for medical purpose. J Radioanal Nucl Chem 245:403–406

    Article  Google Scholar 

  16. Esteban JM, Hyams DM, Beatty BG, Marchant B, Beatty JD (1990) Radioimmunotherapy of human colon carcinomatosis xenograft with 90Y-ZCE025 monoclonal antibody: toxicity and tumor phenotype studies. Cancer Res 50:989–992

    Google Scholar 

  17. Morton BA, Beatly BG, Mison AP, Wanek PM, Beatty JD (1990) Role of bone marrow transplantation in 90Y antibody therapy of colon cancer xenografts in nude mice. Cancer Res 50:1008–1010

    Google Scholar 

  18. Roselli M, Schlom J, Gansow OA, Raubitschek A, Mirdzadeh S, Brechbiel MW, Colcher D (1989) Comparative biodistributions of yttrium- and indium-labeled monoclonal antibody B72.3 in athymic mice bearing human colon carcinoma xenografts. J Nucl Med 30:672–682

    CAS  Google Scholar 

  19. Vanura P, Makrlik E (2002) Separation of microamounts of yttrium from strontium by using nitrobenzene solution of sodium dicarbollylcobaltate in the presence of 18-crown-6. J Radioanal Nucl Chem 251:499–501

    Article  CAS  Google Scholar 

  20. Makrlik E, Vanura P (2001) Extraction of microamounts of yttrium from strontium in a water-nitrobenzene system. J Radioanal Nucl Chem 250:385–386

    Article  CAS  Google Scholar 

  21. Roy K, Mohapatra PK, Rawat N, Pal DK, Basu S, Manchanda VK (2004) Separation of 90Y from 90Sr using zirconium vanadate as the ion exchanger. Appl Radiat Isot 60:621–624

    Article  CAS  Google Scholar 

  22. Dash A, Bhattacharyya PK (1994) Preparation of a 90Sr–90Y generator using zirconium antimonate. Appl Radiat Isot 45:415–417

    Article  CAS  Google Scholar 

  23. Skraba WJ, Arino H, Kramer HH (1978) A new 90Sr/90Y radioisotope generator. Int J Appl Radiat Isot 29:91–96

    Article  CAS  Google Scholar 

  24. Suzuki Y (1964) Preparation of carrier-free 90Y from 90Sr with ion exchange. Int J Appl Radiat Isot 15:599–602

    Article  CAS  Google Scholar 

  25. Chekhomova LF, Cherednichenko NV (1998) Ion exchanger for 90Y–90Sr generator system. Zhurnal analiticheskoi khimii 53:1032–1037

    Google Scholar 

  26. Lobo V, Turel ZR (2001) Radiochemical separation by inorganic ion exchanger and determination of cesium in complex matrices by thermal neutron activation analysis. J Radioanal Nucl Chem 247:221–222

    Article  CAS  Google Scholar 

  27. El Naggar IM, Belaey N, Mohamed DA, Meslalam MMA (1999) Effects and management. In: Proceedings of the international conference on hazardous waste sources. Cairo, Egypt, p 841-853

  28. Bortun AI, Bortun LN, Clearfield A (1996) Ion exchange properties of a cesium ion selective titanosilicate. Solvent Extr Ion Exch 14:341–354

    Article  CAS  Google Scholar 

  29. Sarkar B, Basu S (1989) Studies on zirconium tungstate ion exchanger. Indian J Chem 28A:346–348

    CAS  Google Scholar 

  30. Vogel AI (1978) Text book of quantitative inorganic analysis, 4th edn. ELBS Longman, UK, p 488

  31. Dhara S, Sarkar S, Basu S, Chattopadhyay P (2009) A novel aluminum vanadate ion exchanger and its use for separation of 137mBa, 115mIn and 110mAg from 137Cs, 115Cd and 198Au, respectively. Appl Radiat Isot 67:1764–1768

    Article  CAS  Google Scholar 

  32. Nakamoto K (1997) Infrared and raman spectra of coordination compounds. Wiley, NewYork

    Google Scholar 

  33. Sarkar S, Patra A, Drew MGB, Zangrando E, Chattopadhyay P (2009) Copper(II) complexes of tetradentate N2S2 donor sets: synthesis, crystal structure characterization and reactivity. Polyhedron 28:1–6

    Article  CAS  Google Scholar 

  34. Zheng YQ, Xu W, Lin F, Fang GS (2006) Syntheses and crystal structures of copper(II) complexes derived from 2,4,6-tris(2-pyridyl)-1,3,5-triazine. J Coord Chem 59:1825–1834

    Article  CAS  Google Scholar 

  35. Dhara S, Dey S, Basu S, Drew MGB, Chattopadhyay P (2007) Separation of 137mBa from 137Cs using new ion exchanger Na2(H2O)4(H3O)[Al(OH)6Mo6O18]. Radiochim Acta 95:297–301

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial assistance from UGC-DAE Center for Scientific Research, Kolkata is gratefully acknowledged. The authors are also grateful to Dr. A. Saha and Dr. A. Datta of UGC-DAE Center for Scientific Research, Kolkata. The authors are obliged to the University of Burdwan for their kind permission to carry out the work using the infrastructure facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pabitra Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, R., Dhara, S., Basu, S. et al. Quinolinephosphomolybdate as ion exchanger: synthesis, characterization, and application in separation of 90Y from 90Sr. J Radioanal Nucl Chem 287, 55–59 (2011). https://doi.org/10.1007/s10967-010-0688-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0688-0

Keywords

Navigation