Journal of Radioanalytical and Nuclear Chemistry

, Volume 285, Issue 3, pp 653–658 | Cite as

Lanthanide–actinide separation by bis-2-ethylhexylphosphoric acid from citric acid–nitric acid medium

  • A. S. Suneesh
  • Jammu Ravi
  • K. A. Venkatesan
  • M. P. Antony
  • T. G. Srinivasan
  • P. R. Vasudeva Rao


High-level liquid waste from fast reactor fuel reprocessing stream contains significant quantities of lanthanides and trivalent minor actinides. The lanthanides and minor actinides (MA) have been separated from the fast reactor high-level liquid waste (FR-HLLW) using TRUEX solvent, which is a mixture of 0.2 M octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO)-1.2 M tri-n-butylphosphate (TBP) in n-dodecane. A new stripping composition, 0.1 M HNO3 and 0.1 M citric acid (CA), has been employed for back extraction of them from the TRUEX solvent. In order to separate lanthanides from actinides present in the strip solution, the extraction behavior of 241Am(III) and (152+154)Eu(III) from CA–HNO3 medium by a solution of bis-2-ethylhexylphosphoric acid (HDEHP) in n-dodecane has been studied. Separation factors (SF = D Eu/D Am) has been reported as a function of various parameters such as pH, concentrations of HDEHP, diethylenetriamine-N,N,N′,N′′,N′′′-pentaaceticacid (DTPA), 1-octanol and TBP in this paper.


Lanthanide Actinide Separation Bis-2-ethylhexylphosphoric acid Diethylenetriamine-N N,N′,N′′,N′′′-pentaaceticacid 


  1. 1.
    Choppin GR (1995) Comparative solution chemistry of the 4f and 5f elements. J Alloys Compds 223:174–179CrossRefGoogle Scholar
  2. 2.
    Mikheev NB, Spytsin VI, Dyachkova RA, Auerman LN (1979) Energetics of 5f- and 4f-orbitals and 5f- and 4f-elements similarity. J. Phys. Colloques 40(C4):C4-230–C4-232CrossRefGoogle Scholar
  3. 3.
    Aspinall HC (2001) Chemistry of f-block elements, advanced chemistry texts. Gordon and Breach Science Publishers, New YorkGoogle Scholar
  4. 4.
    Greenwood NN, Earnshaw A (2010) Chemistry of elements. Elsevier Publishers, AmsterdamGoogle Scholar
  5. 5.
    Kolarik Z, Müllich U, Gassner F (1999) Selective extraction of Am(III) over Eu(III) by 2, 6-ditriazolyl- and 2, 6-ditriazinylpyridines. Solvent Extr Ion Exch 17:23–32CrossRefGoogle Scholar
  6. 6.
    Suzuki T, Otake K, Sato M, Ikeda A, Aida M, Fujii Y, Hara M, Mitsugashira T, Ozawa M (2007) Separation of americium and curium by use of tertiary pyridine resin in nitric acid/methanol mixed solvent system. J Radioanal Nucl Chem 272:257CrossRefGoogle Scholar
  7. 7.
    Peterman DR, Greenhalgh MR, Tillotson RD, Klaehn JR, Harrup MK, Luther TA, Law JD, Daniels LM (2008) Separation of minor actinides from lanthanides by dithiophosphinic acid extractants. ISEC 2008, INL/CON-07-13474Google Scholar
  8. 8.
    Modolo G, Odoj R (2001) Method of separating a trivalent actinide from a trivalent lanthanide and or yttrium in aqueous solution. US Patent no. 6312654 B1Google Scholar
  9. 9.
    Modolo G, Odoj R (1999) Method of separating a trivalent actinide from a trivalent lanthanides. US Patent no. 5966584Google Scholar
  10. 10.
    Fitoussi R, Musikas C, Ranarivelo H (1984) Method for separating actinide from lanthanides in an acidic aqueous solution. US Patent no. 4461747Google Scholar
  11. 11.
    Smith BF, Jarvinen GD, Ryan RR (1989) Separation of lanthanides from actinides. US Patent no. 4867951Google Scholar
  12. 12.
    Nilsson M, Nash KL (2007) A review of the development and operational characteristics of the TALSPEAK process. Solvent Extr Ion Exch 25:665–701CrossRefGoogle Scholar
  13. 13.
    Weaver W, Kappelmann FA (1964) A new method for separating americium from curium from the lanthanides by extraction from an aqueous solution of aminopolyacetic acid complexed with a monoacidic organophosphate of Phosphonate. ORNL/3559, TID-4500Google Scholar
  14. 14.
    Weaver W, Kappelmann FA (1968) Preferential extraction of lanthanides over trivalent actinides by monoacidic organophosphates from carboxylic acids and from mixtures of carboxylic and aminopolyacetic acids. J Inorg Nucl Chem 30:263–272CrossRefGoogle Scholar
  15. 15.
    Del Cul GD, Bond WD, Toth LM, Davis GD, Dai S, Metcalf DH (1994) Citrate based “TALSPEAK” lanthanide-actinide separation process. ORNL/TM-12785Google Scholar
  16. 16.
    Choppin GR, Thakur P, Mathur JN (2006) Complexation thermodynamics and structural aspects of actinide-aminopolycarboxylates. Coordination Chem Rev 250:936–947CrossRefGoogle Scholar
  17. 17.
    Schulz WW, Horwltz EP (1986) Recent progress in the extraction chemistry of actinide ions. J Less-Common Metals 122:125–138CrossRefGoogle Scholar
  18. 18.
    Ansari SA, Pathak PN, Manchanda VK, Hussain M, Prasad AK, Parmar VS (2005) N,N,N′N′-Tetraoctyl diglycolamide (TODGA): a promising extractant for actinide-partitioning from high-level waste (HLW). Solvent Extr Ion Exch 23:463–479CrossRefGoogle Scholar
  19. 19.
    Zhang P, Song CL, Liang JF, Xin RX (2001) Extraction and retention of plutonium with γ-irradiated 30% trialkylphosphine oxide–kerosene solution. Solvent Extr Ion Exch 19:79–89CrossRefGoogle Scholar
  20. 20.
    Morita Y, Kubota M (1987) Extraction of pentavalent neptunium with di-isodecyl phosphoric acid. J Nucl Sci Technol 24:227–232CrossRefGoogle Scholar
  21. 21.
    Horwitz EP, Diamond H, Martin KA, Chiarzia R (1987) Extraction of americium (III) from chloride media by octyl(phenyl)-N,N-diisobutylcarbomoylmethylphosphine oxide. Solvent Extr Ion Exch 5:419–446CrossRefGoogle Scholar
  22. 22.
    Nash KL, Maddic C, Mathur JN, Lacquement J (2006) In: Morss LR, Edelstein NM, Fuger J (eds) The chemistry of the actinides and transactinides elements, Chap 24. Springer, NetherlandsGoogle Scholar
  23. 23.
    Law JD, Brewer KN, Herbst RS, Todd TA, Olsen LG (1998) Demonstration of optimized TRUEX flow sheet for partitioning of actinides from actual ICPP sodium bearing waste using centrifugal contractors in a shielded cell facility. INEL/EXT-98-00004Google Scholar
  24. 24.
    Chitnis RR, Dhami PS, Gopalakrishnan V, Wattal PK, Ramanujam A, Murali MS, Mathur JN, Bauri AK, Chattobathya S (2000) Patitioning of actinides from high waste solution of PUREX origin: counter current extraction studies using TBP and CMPO. BARC/E-031Google Scholar
  25. 25.
    Chitnis RR, Wattal PK, Ramanujam A, Dhami PS, Gopalakrishnan V, Bauri AK, Banerji A (1999) Recovery of actinides extracted by TRUEX solvent from high level waste using complexing agents, II: counter-current studies. J Radioanal Nucl Chem 240:727–731CrossRefGoogle Scholar
  26. 26.
    Ramanujam A, Dhami PS, Gopalakrishnan V, Dudwadkar NL, Chitnis RR, Mathur JN (1999) Partitioning of actinides from high level waste of PUREX origin using octylphenyl-N,N′-diisobutylcarbamoylmethylphosphine oxide (CMPO)-based supported liquid membrane. Sep Sci Technol 34:1717–1725CrossRefGoogle Scholar
  27. 27.
    Robert Selvan B, Syamala KV, Suneesh AS, Venkatesan KA, Antony MP, Srinivasan TG, Vasudeva Rao PR (2009) In: Joshi AR, Thulasidas SK, Sawant RM, Sen BK, Venugopal V (eds) Nuclear and radiochemistry symposium. Mumbai, India, p 353Google Scholar
  28. 28.
    Antony MP, Manivannan R, Rajeswari S, Kumaresan R, Syamala KV, Robertselvan B, Suneesh AS, Sukumaran V, Karunakaran R, Kalaiarasu T, Amalraj A, Bapuji T, Venkatesan KA, Srinivasan TG, Vasudeva Rao PR (2010) In: Pathak PN, Sawant RM, Ramakumar KL, Manchanda VK (eds) Symposium of emerging trends on separation science and technology. Kalpakkam, India, p 385Google Scholar
  29. 29.
    Antony MP, Kumaresan R, Suneesh AS, Rajeswari S, Robertselvan B, Sukumaran V, Manivannan R, Syamala KV, Venkatesan KA, Srinivasan TG, Vasudeva Rao PR (2010) Development of a CMPO based extraction process for partitioning of minor actinides and demonstration with geneuine fast reactor fuel solution (155 GWd/Te). Radiochimica Acta (Communicated)Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • A. S. Suneesh
    • 1
  • Jammu Ravi
    • 1
  • K. A. Venkatesan
    • 1
  • M. P. Antony
    • 1
  • T. G. Srinivasan
    • 1
  • P. R. Vasudeva Rao
    • 1
  1. 1.Fuel Chemistry DivisionIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations