Journal of Radioanalytical and Nuclear Chemistry

, Volume 285, Issue 2, pp 293–300 | Cite as

The stability of the 105[Rh(16S4diol)Cl2]+ radiopharmaceutical precursor in solutions containing human plasma thiols

  • Seweryn Krajewski
  • Aleksander Bilewicz


105Rh[1,5,9,13-tetrathiacyclohexadecane-3,11-diol] is a promising drug precursor for targeted radiotherapy. Nevertheless, the axial position of chloride ions in the complex structure and their weak binding to rhodium centre, due to HSAB concept, make such a complex subject to modifying action of certain sulphuric ligands, like human plasma thiol antioxidants: glutathione and cysteine. Experiments were performed with both radioactive 105Rh and inactive rhodium. The complexation of rhodium with 1,5,9,13-tetrathiacyclohexadecane-3,11-diol (16S4diol) resulted in three distinct peaks seen on UV, radiometric and MS chromatograms. The substitution of chlorides was noted in over 80% of 105[Rh(16S4diol)Cl2]+ units after incubation with glutathione, and less than 10% of complex units after incubation with cysteine (24 h, 37 °C). Reaction of 105[Rh(16S4diol)Cl2]+ with 1,8-octandithiol and 1,9-nonandithiol resulted in disappearance of the complex peak and occurrence of two new peaks. Product of RhCl3 and 16S4diol reaction is a mixture of three distinct forms having different number of chlorine atoms. Our in vitro experiments suggest that the substitution of axial chlorides with glutathione and cysteine might also occur in vivo in human plasma. Glutathione shows higher reactivity than cysteine in replacement reaction. Axial positions in precursor might be effectively blocked by 1,8-octandithiol and 1,9-nonandithiol.


105Rh 1,5,9,13-Tetrathiacyclohexadecane-3,11-diol Rhodium complex Glutathione Radiopharmacy 



This study was supported by grant No. N204 143 32/3547 from the Ministry of Science and Higher Education, Poland, and by the European Cooperation in Science and Technology Action BM0607, Contract No. 53/040/2009, Dec. 368/N-COST/2008/0. The authors would like to thank the Structural Research Laboratory (SRL) at the Department of Chemistry, Warsaw University, Poland for access to HPLC-MS/MS. The SRL was established with financial support from the European Regional Development Fund in the Sectoral Operational Programme “Improvement of the Competitiveness of Enterprises, years 2004–2005” project No. WPK 1/1.4.3./1/2004/72/72/165/2005/U.


  1. 1.
    Nayak TK, Atcher RW, Prossnitz ER, Norenberga JP (2008) Nucl Med Biol 35:673–678CrossRefGoogle Scholar
  2. 2.
    Van Essen M, Krenning EP, Kam BL, Vallabhajosula S, Goldsmith S, Milowsky MI, Morris M (2008) Eur J Nucl Med Mol Imaging 35:743–748CrossRefGoogle Scholar
  3. 3.
    Bander NH, Nanus DM, Tagawa SS, Vallabhajosula S, Goldsmith M, Milowsky M, Morris MJ (2008) J Urol (Suppl) 179:253Google Scholar
  4. 4.
    Majkowska A, Neves M, Antunes I, Bilewicz A (2009) Appl Radiat Isot 67:11–13CrossRefGoogle Scholar
  5. 5.
    Tijink BM, Neri D, Leemans CR, Budde M, Dinkelborg LM, Stigter-Van Walsum M, Zardi L, Van Dongen GAMS (2006) J Nucl Med 47:1127–1135Google Scholar
  6. 6.
    Firestone RB, Shirley VS, Baglin CM, Chu SYF, Zipkin J (1996) Table of isotopes, 8th edn. Wiley, New YorkGoogle Scholar
  7. 7.
    Unni PR, Pillai MRA (2002) Radiochim Acta 90:363–369CrossRefGoogle Scholar
  8. 8.
    Pruchnik FP (2005) In: Gielen M, Tiekink ERT (eds) Metallotherapeutic drugs and metal-based diagnostic agents—the use of metals in medicine, 1st edn. Wiley, EnglandGoogle Scholar
  9. 9.
    Li N, Struttman M, Higginbotham C, Grall AJ, Skerlj JF, Vollano JF, Bridger SA, Ochrymowycz LA, Ketring AR, Abrams MJ, Volkert WA (1997) Nucl Med Biol 24:85–92CrossRefGoogle Scholar
  10. 10.
    Venkatesh M, Goswami N, Volkert WA, Schlemper EO, Ketring AR, Barnes CL, Jurisson S (1996) Nucl Med Biol 23:33–40CrossRefGoogle Scholar
  11. 11.
    Pearson PG (1963) J Am Chem Soc 85:3533–3539CrossRefGoogle Scholar
  12. 12.
    Goswami N, Higginbotham C, Volkert W, Alberto R, Nef W, Jurisson S (1999) Nucl Med Biol 26:951–957CrossRefGoogle Scholar
  13. 13.
    Goswami N, Alberto R, Barnes CL, Jurisson S (1996) Inorg Chem 35:7546–7555CrossRefGoogle Scholar
  14. 14.
    Jurisson SS, Ketring AR, Volkert WA (1997) Transit Met Chem 22:315–317CrossRefGoogle Scholar
  15. 15.
    Li N, Eberlein CM, Volkert WA, Ochrymowycz L, Barnes C, Ketring AR (1996) Radiochim Acta 75:83–95Google Scholar
  16. 16.
    Bartoś B, Kowalska E, Bilewicz A, Skarnemark G (2008) J Radioanal Nucl Chem 279:655–657CrossRefGoogle Scholar
  17. 17.
    Skarnemark G, Ödegaard-Jensen A, Nilsson J, Bartos B, Kowalska E, Bilewicz A, Bernhardt P (2009) J Radioanal Nucl Chem 280:371–373CrossRefGoogle Scholar
  18. 18.
    Grazman B, Troutner DE (1988) Appl Radiat Isot 39:257–260CrossRefGoogle Scholar
  19. 19.
    Bilska A, Kryczyk A, Włodek L (2007) Postepy Hig Med Dosw (Online) 61:438–453Google Scholar
  20. 20.
    Tajc SG, Tolbert BS, Basavappa R, Miller BL (2004) J Am Chem Soc 126:10508–10509CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.Institute of Nuclear Chemistry and TechnologyWarsawPoland

Personalised recommendations