One step U-Pu-Cs-Ln-steel separation using TRU preconditioned extraction resins from Eichrom for application on transmutation targets

  • S. Quidelleur
  • M. Granet
  • I. Laszak
  • H. Isnard
  • E. Pons-Branchu
  • R. Brennetot
  • C. Caussignac


A one step Cs, lanthanides (Ln), Pu and U separation using TRU resin (Eichrom), for subsequent isotopic analyses, is presented for samples of transmutation targets containing a predominant matrix of steel elements. Cs, Ln, Pu and U are successively eluted using minor volumes (<12 mL) of 2M HNO3, 4M HCl, 0.075M oxalic acid in 1M HCl media and 0.1M ammonium hydrogen oxalate in 0.02M HNO3 media, respectively. Accurate and precise isotopic compositions obtained for these elements by thermal ionization mass spectrometry or multiple collector inductively coupled mass spectrometry show neither significant fractionation nor contamination during the complete analytical process.


Plutonium Thermal Ionization Mass Spectrometry Steel Container Steel Element Element Recovery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Isnard, M. Aubert, P. Blanchet, R. Brennetot, F. Chartier, V. Geertsen, F. Manuguerra, Spectrochim. Acta, Part 61 (2006) 150.Google Scholar
  2. 2.
    D. Alamelu, S. K. Aggarwal, J. Alloys and Compounds, 444–445 (2007) 640.CrossRefGoogle Scholar
  3. 3.
    M. Granet, et al., High accuracy measurements of Pu isotopes by MC-ICP-MS with in situ U/Pu separation using CO2, NH3 and C2H4 gases in a collision-reaction cell, in preparation.Google Scholar
  4. 4.
    Z. Varga, Anal. Chim. Acta, 587 (2007) 165.CrossRefGoogle Scholar
  5. 5.
    C. Pin, J. F. Santos Zalduegui, Anal. Chim. Acta, 339 (1997) 79.CrossRefGoogle Scholar
  6. 6.
    S. L. Maxwell, D. J. Fauth, S. T. Nichols, J. Radioanal. Nucl. Chem., 250 (2001) 117.CrossRefGoogle Scholar
  7. 7.
    U. Nygren,, I. Rodushkin, C. Nilsson, D. C. Baxter, JAAS 18 (2003) 1426.Google Scholar
  8. 8.
    S. -H. Lee, J. La Rosa, J. Gastaud, P. P. Povinec, J. Radioanal. Nucl. Chem., 263 (2005) 419.Google Scholar
  9. 9.
    S. L. Maxwell, J. Radioanal. Nucl. Chem., 267 (2006) 537.CrossRefGoogle Scholar
  10. 10.
    S. L. Maxwell III, B. K. Culligan, J. Radioanal. Nucl. Chem., 270 (2006) 699.CrossRefGoogle Scholar
  11. 11.
    R. Jakopic, P. Tavcar, L. Benedik, Appl. Radiat. Isotopes, 65 (2007) 504.CrossRefGoogle Scholar
  12. 12.
    E. P. Horwitz, R. Chiarizia, M. L. Dietz, H. Diamond, D. Nelson, Analyt. Chim. Acta, 281 (1993) 361.CrossRefGoogle Scholar
  13. 13.
    R. Chiarizia, E. P. Horwitz, Inorg. Chim. Acta, 140 (1987), 261.CrossRefGoogle Scholar
  14. 14.
    M. Yamaura, H. T. Matsuda, J. Radioanal. Nucl. Chem., 241 (1999) 277.CrossRefGoogle Scholar
  15. 15.
    M. Yamaura, H. T. Matsuda, J. Radioanal. Nucl. Chem., 224 (1997) 83.CrossRefGoogle Scholar
  16. 16.
    J. W. Grate, O. B. Egorova, S. K. Fiskum, Analyst, 124 (1999) 1143.CrossRefGoogle Scholar
  17. 17.
    O. B. Egorov, M. J. O’Hara, O. T. Farmer III, J. W. Grate, Analyst, 126 (2001) 1594.CrossRefGoogle Scholar
  18. 18.
    J. M. Cleveland, The Chemistry of Plutonium, American Nuclear Society, Illinois USA, 1979, p. 653.Google Scholar
  19. 19.
    F. Weigel, J. J. Katz, G. T. Seaborg, in: The Chemistry of the Actinide Elements, J. J. Katz, G. T. Seaborg, L. R. Morss, (Eds.), Chapman and Hall, London, New York, ed. 2, 1986, Vol 1, p. 499.Google Scholar
  20. 20.
    C.-S. Kim, C.-K. Kim, P. Martin, U. Sansone, J. Anal. At. Spectrom., 22 (2007) 827.CrossRefGoogle Scholar
  21. 21.
    E. P. Horwitz, M. L. Dietz, R. Chiarizia, H. Diamond, S. L. Maxwell, M. R. Nelson, Anal. Chim. Acta, 310 (1995) 63.CrossRefGoogle Scholar
  22. 22.
    J. B. Truscott, L. Bromley, P. Jones, E. H. Evans, J. Turner, B. Fairman, J. Anal. At. Spectrom., 14 (1999) 627.CrossRefGoogle Scholar
  23. 23.
    G. L. Silver, J. Radioanal. Nucl. Chem., 267 (2006), 53.CrossRefGoogle Scholar
  24. 24.
    G. L. Silver, J. Radioanal. Nucl. Chem., 275 (2008) 225.CrossRefGoogle Scholar
  25. 25.
    M. H. Lee, Y. J. Park, W. H. Kim, J. Radioanal. Nucl. Chem., 273 (2007) 375.CrossRefGoogle Scholar
  26. 26.
    R. J. Lemire, J. Fuger, H. Nitsche, P. E. Potter, M. H. Rand, J. U. Rydberg, K. Spahiu, J. C. Sullivan, W. J. Ullman, P. Vitorge, H. Wanner, Chemical thermodynamics of neptunium and plutonium, Nuclear Energy Agency Data Bank, OECD, Vol 4, Chemical Thermodynamics, 2001.Google Scholar
  27. 27.
    J. L. Ryan, J. Phys. Chem., 64 (1960) 1375.CrossRefGoogle Scholar
  28. 28.
    J. L. Ryan, J. Phys. Chem., 65, (1961) 1099.CrossRefGoogle Scholar
  29. 29.
    Eichrom Industries Inc., Eichrom Analytical Products description, Eichrom Industries Inc.,1995.Google Scholar
  30. 30.
    R. M. Smith, A. E. Martell, R. J. Motekaitis, NIST critically selected stability constants of metal complexes database, version 8. 0 for Windows, 2004.Google Scholar
  31. 31.
    S. D. Tanner, C. Li, V. Vais, V. I. Baranov, D. R. Bandura, Anal. Chem., 76 (2004) 3042.CrossRefGoogle Scholar
  32. 32.
    D. Alamelu, P. S., Khodade, P. M. Shah, S. K. Aggarwal, Int. J. Mass Spectrometry, 239 (2004) 51.CrossRefGoogle Scholar
  33. 33.
    S. K. Aggarwal, D. Alamelu, P. S. Khodade, P. M. Shah, J. Radioanal. Nucl. Chem., 237 (2007) 775.CrossRefGoogle Scholar
  34. 34.
    H. Isnard, et al., in preparation.Google Scholar
  35. 35.
    H. Isnard, R. Brennetot, C. Caussignac, N. Caussignac, F. Chartier, Int. J. Mass Spectrometry, 246 (2005) 66.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • S. Quidelleur
    • 1
  • M. Granet
    • 1
  • I. Laszak
    • 1
  • H. Isnard
    • 1
  • E. Pons-Branchu
    • 1
  • R. Brennetot
    • 1
  • C. Caussignac
    • 1
  1. 1.Commissariat à l’Energie AtomiqueDEN/DPC/SECR/LANIEGif-sur-Yvette CedexFrance

Personalised recommendations