Instrumental neutron activation analysis of hafnium in zirconium metal using internal standardization

  • Tsutomu Miura
  • Hideaki Matsue
  • Takayoshi Kuroiwa

Instrumental neutron activation analysis with the internal standard correction was applied to determination Hf in high purity Zr metal. Zirconium, which was a matrix element, was used as an internal standard to compensate for inhomogeneity of the neutron flux through an irradiation capsule and to improve the gamma ray measurement uncertainty. It was found that the linearity of the calibration curves of Hf was improved with using an internal standard. The analytical result of Hf in Zr metal was in good agreement with that obtained by ICP-SFMS. The relative expanded uncertainty (k = 2) was 2.1%, and it was comparable to that of ICP-SFMS.


Neutron activation analysis Hafnium Zirconium Internal standard method Standard addition method Titration Measurement uncertainty Primary standard solution 


  1. 1.
    Milton MJT, Quinn TJ (2001) Metrologia 38:289–296CrossRefGoogle Scholar
  2. 2.
    Report of the 13th meeting (19–20 April 2007) on Comité Consultatif pour la Quantité de Matière (CCQM), BIPM, Sèvres, France (April 2008), p 8Google Scholar
  3. 3.
    Greenberg RR (2008) J Radioanal Nucl Chem 278:231–240CrossRefGoogle Scholar
  4. 4.
    Yonezawa C, Komori T (1983) Anal Chem 55:2059–2062CrossRefGoogle Scholar
  5. 5.
    Greenberg RR, Lindstrom RM, Simons DS (2000) J Radioanal Nucl Chem 245:57–63CrossRefGoogle Scholar
  6. 6.
    Kucera J, Bode P, Stepanek V (2004) Quantifying uncertainty in nuclear analytical measurements, IAEA TECDOC 1401, Vienna, pp 77–101Google Scholar
  7. 7.
    Lindstrom RM, Greenberg RR (2001) J Nucl Radiochem Sci 2:R1–R4Google Scholar
  8. 8.
    Leliaert G, Hoste J, Eechhaut Z (1958) Nature 182:600CrossRefGoogle Scholar
  9. 9.
    Yagi M, Masumoto K (1984) J Radioanal Nucl Chem 83(2):319–331Google Scholar
  10. 10.
    Yonezawa C, Imai H, Hongo T, Hoshi M, Tachikawa E, Kabuto M, Suzuki T (1992) Bunseki Kagaku 41:581–588Google Scholar
  11. 11.
    Fritz JS, Johnson M (1955) Anal Chem 27:1653–1655CrossRefGoogle Scholar
  12. 12.
    Hirn CF, Lucchesi CA (1959) Anal Chem 31:1417–1418CrossRefGoogle Scholar
  13. 13.
    Hioki A, Fudagawa N, Kubota M, Kawase A (1989) Bunseki Kagaku 38:T149–T155Google Scholar
  14. 14.
    de Corte F, Simonits A (2003) Atom Data Nucl Data Tables 85:47–67CrossRefGoogle Scholar
  15. 15.
    Fazekas B, Molnar GL, Belgya T, Dabolczi L, Simonnits A (1997) J Radioanal Nucl Chem 215:271–277CrossRefGoogle Scholar
  16. 16.
    Linsinger TPJ, Pauwels J, Van Der Veen AMH, Schimmel H, Lamberty A (2001) Accred Qual Assur 6:20–25CrossRefGoogle Scholar
  17. 17.
    de Corte F, Simonits A (1994) Vade Mecum For k0-Users, Addendum to the Kayzero/Solcoi Software Package (Version 3.0), DSM Research, R94/11492, GeleenGoogle Scholar
  18. 18.
    Miyata S, Tanji A, Imura H, Matsue H, Yonezawa C (2006) Bunseki Kagaku 55:689–699CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Tsutomu Miura
    • 1
  • Hideaki Matsue
    • 2
  • Takayoshi Kuroiwa
    • 1
  1. 1.National Metrology Institute of Japan/AISTTsukubaJapan
  2. 2.Japan Atomic Energy AgencyTokaimuraJapan

Personalised recommendations