Chemical changes in bromeliad leaves at different vegetative stages

  • C. Elias
  • E. A. N. Fernandes
  • E. J. França
  • M. A. Bacchi


Studies concerning the accumulating capacity of native epiphytic bromeliads are of utmost relevance, due to the continuous incorporation of chemical elements provided by these organisms in the ecosystems. Bromeliad species from diverse São Paulo State conservation units, Brazil, were sampled for young, mature and old leaves using a sustainable sampling method. By applying INAA, the accumulation of ten chemical elements, i.e. Br, Ca, Co, Fe, K, Na, Rb, Sc, Sr and Zn, was investigated in different leaf vegetative stages. The bromeliads showed divergent chemical element distribution patterns, demonstrating a real complexity in the accumulation and translocation mechanisms utilized by these plants.


Bromeliad leaves Chemical composition INAA 



The authors are thankful to The State of São Paulo Research Foundation—FAPESP for financial support (Processes 05/57547-5, 06/60265-4 and 06/04307-1).


  1. 1.
    Inselsbacher E, Cambui CA, Richter A, Stange CF, Mercier H, Wanek W (2007) New Phytol 175:311CrossRefGoogle Scholar
  2. 2.
    Benzing DH (2004) In: Lowman MD, Rinker HB (eds) Forest canopies. Elsevier, San Diego, 36 pGoogle Scholar
  3. 3.
    Engwald S, Schmit-Neuerburg V, Barthlott W (2000) Epiphytes in rain forests of Venezuela—diversity and dynamics of a biocenosis. Verlag Günter Heimbach, Stuttgart, pp 425–434Google Scholar
  4. 4.
    Richardson BA (1999) Biotropica 31:321CrossRefGoogle Scholar
  5. 5.
    Nadkarni NM, Merwln MC, Nieder J (2001) In: Levin SA (ed) Encyclopedia of biodiversity. Academic Press, San Diego, pp 27–40Google Scholar
  6. 6.
    Merwln MC, Rentmeester SA, Nadkarni NM (2003) Biotropica 35:37Google Scholar
  7. 7.
    Markert B (1998) In: Schüürmann G, Markert B (eds) Ecotoxicology. Wiley, New York, pp 165–222Google Scholar
  8. 8.
    Greger M (2004) Uptake of nuclides by plants. Technical report, Stockholm, 70 pGoogle Scholar
  9. 9.
    Rodríguez-Navarro A, Rubio F (2006) J Exp Bot 57:1149CrossRefGoogle Scholar
  10. 10.
    Haslett BS, Reid RJ, Rengel Z (2001) Ann Bot 87:379CrossRefGoogle Scholar
  11. 11.
    Bauer P, Hell R (2006) In: Barton LL, Abadia J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Netherlands, pp 279–288CrossRefGoogle Scholar
  12. 12.
    Goor BJ, Lune P (1980) Physiol Plant 48:21CrossRefGoogle Scholar
  13. 13.
    Malavolta E (2006) Manual de Nutrição Mineral de Plantas. Agronômica Ceres, São Paulo, 638 p (in Portuguese)Google Scholar
  14. 14.
    Elias C (2008) MSc Dissertation, Universidade de São Paulo, 173 p (in Portuguese)Google Scholar
  15. 15.
    Markert B (1995) Sci Total Environ 176:45CrossRefGoogle Scholar
  16. 16.
    França EJ, De Nadai Fernandes EA, Bacchi MA (2003) J Radioanal Nucl Chem 257:113CrossRefGoogle Scholar
  17. 17.
    Bacchi MA, De Nadai Fernandes EA (2003) J Radioanal Nucl Chem 257:577CrossRefGoogle Scholar
  18. 18.
    SAS Institute Inc. (1999) SAS/STAT guide for personal computers, 8th edn. SAS Institute, CaryGoogle Scholar
  19. 19.
    Ferrari AA, França EJ, Fernandes EAN (2006) J Radioanal Nucl Chem 270:69CrossRefGoogle Scholar
  20. 20.
    Nayyar H (2003) Curr Sci 84:893Google Scholar
  21. 21.
    Kabata-Pendias A (2001) Trace elements in soils and plants. CRC Press, Boca Raton, 413 pGoogle Scholar
  22. 22.
    Maas FM, van Wetering DAM, van Beusichem ML, Bienfait HF (1988) Plant Physiol 87:167CrossRefGoogle Scholar
  23. 23.
    Zotz G, Hietz P (2001) J Exp Bot 52:2067CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • C. Elias
    • 1
  • E. A. N. Fernandes
    • 1
  • E. J. França
    • 1
  • M. A. Bacchi
    • 1
  1. 1.Centro de Energia Nuclear na AgriculturaUniversidade de São PauloPiracicabaBrazil

Personalised recommendations