Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 283, Issue 1, pp 193–196 | Cite as

Extraction of europium trifluoromethanesulfonate into nitrobenzene in the presence of some electroneutral calixarene ligands

  • E. Makrlík
  • J. Budka
  • P. Vaňura
  • P. Selucký
Article

Abstract

From extraction experiments and γ-activity measurements, the extraction constants corresponding to the general equilibrium Eu3+(aq) + 3 A(nb) + L(nb) ⇔ EuL3+(nb) + A(nb) taking place in the two-phase water–nitrobenzene system (\( {\text{A}}^{ - } = {\text{CF}}_{3} {\text{SO}}_{3}^{ - } \); L = tetrakis(2-ethoxyethoxy)-tetra-p-tert-butylcalix[4]arene (1), tetraethyl p-tert-butylcalix[4]arene tetraacetate (2), p-tert-butylcalix[4]arene-tetrakis(N,N-diethylacetamide) (3), hexaethyl p-tert-butylcalix[6]arene hexaacetate (4), p-tert-butylcalix[6]arene-hexakis(N,N-diethylacetamide) (5); aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Further, the stability constants of the EuL3+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the series of 2 < 4 < 1 < 5 < 3.

Keywords

Extraction Europium Trifluoromethanesulfonate Nitrobenzene Calixarene 

Notes

Acknowledgement

The present work was supported by the Czech Ministry of Education, Youth and Sports, Projects MSM 4977751303 and MSM 6046137307.

References

  1. 1.
    Böhmer V (1995) Angew Chem Int Ed Engl 34:713CrossRefGoogle Scholar
  2. 2.
    Gutsche CD (1998) Calixarenes revisited. The Royal Society of Chemistry, CambridgeGoogle Scholar
  3. 3.
    Ungaro R, Casnati A, Ugozzoli F, Pochini A, Dozol JF, Hill C, Rouquette H (1994) Angew Chem Int Ed Engl 33:1506CrossRefGoogle Scholar
  4. 4.
    Casnati A, Barboso S, Rouquette H, Schwing-Weill MJ, Arnaud-Neu F, Dozol JF, Ungaro R (2001) J Am Chem Soc 123:12182CrossRefGoogle Scholar
  5. 5.
    Danil de Namor AF, Cleverly RM, Zapata-Ormachea ML (1998) Chem Rev 98:2495CrossRefGoogle Scholar
  6. 6.
    Makrlík E, Vaňura P (2007) Z Phys Chem 221:881Google Scholar
  7. 7.
    Arduini A, Pochini A, Reverberi S, Ungaro R (1986) Tetrahedron 42:2089CrossRefGoogle Scholar
  8. 8.
    Arduini A, Ghidini E, Pochini A, Ungaro R, Andreetti GD, Calestani G, Ugozzoli F (1988) J Incl Phenom Macrocycl Chem 6:119CrossRefGoogle Scholar
  9. 9.
    Arnaud-Neu F, Collins EM, Deasy M, Ferguson G, Harris SJ, Kaitner B, Lough AJ, McKervey MA, Marques E, Ruhl BL, Schwing-Weill MJ, Seward EM (1989) J Am Chem Soc 111:8681CrossRefGoogle Scholar
  10. 10.
    Arnaud-Neu F, Barrett G, Harris SJ, Owens M, McKervey MA, Schwing-Weill MJ, Schwinté P (1993) Inorg Chem 32:2644CrossRefGoogle Scholar
  11. 11.
    Ohto K, Murakami E, Shinohara T, Shiratsuchi K, Inoue K, Iwasaki M (1997) Anal Chim Acta 341:275CrossRefGoogle Scholar
  12. 12.
    Ye Z, He W, Shi X, Zhu L (2001) J Coord Chem 54:105CrossRefGoogle Scholar
  13. 13.
    Danil de Namor AF, Chahine S, Kowalska D, Castellano EE, Piro OE (2002) J Am Chem Soc 124:12824CrossRefGoogle Scholar
  14. 14.
    Marcos PM, Ascenso JR, Segurado MAP, Pereira JLC (2002) J Incl Phenom Macrocycl Chem 42:281CrossRefGoogle Scholar
  15. 15.
    Marcos PM, Félix S, Ascenso JR, Segurado MAP, Pereira JLC, Khazaeli-Parsa P, Hubscher-Bruder V, Arnaud-Neu F (2004) New J Chem 28:748CrossRefGoogle Scholar
  16. 16.
    Makrlík E, Budka J, Vaňura P (2009) Acta Chim Slov 56:278Google Scholar
  17. 17.
    Makrlík E, Vaňura P (2006) Monatsh Chem 137:1185CrossRefGoogle Scholar
  18. 18.
    Lang J, Dybal J, Makrlík E, Vaňura P, Vašíčková S, Maloň P (2007) J Mol Struct 846:157CrossRefGoogle Scholar
  19. 19.
    Dybal J, Makrlík E, Vaňura P, Lang J (2007) Z Phys Chem 221:519Google Scholar
  20. 20.
    Dybal J, Makrlík E, Vaňura P (2007) Monatsh Chem 138:541CrossRefGoogle Scholar
  21. 21.
    Kříž J, Dybal J, Makrlík E, Budka J, Vaňura P (2007) Monatsh Chem 138:735CrossRefGoogle Scholar
  22. 22.
    Dybal J, Makrlík E, Vaňura P, Selucký P (2007) Monatsh Chem 138:1239CrossRefGoogle Scholar
  23. 23.
    Makrlík E, Dybal J, Budka J, Vaňura P (2008) Polish J Chem 82:1441Google Scholar
  24. 24.
    Dybal J, Makrlík E, Vaňura P, Budka J (2008) Monatsh Chem 139:1175CrossRefGoogle Scholar
  25. 25.
    Dybal J, Makrlík E, Budka J, Vaňura P (2008) Monatsh Chem 139:1353CrossRefGoogle Scholar
  26. 26.
    Kříž J, Dybal J, Makrlík E, Vaňura P, Lang J (2007) Supramol Chem 19:419CrossRefGoogle Scholar
  27. 27.
    Kříž J, Dybal J, Makrlík E, Vaňura P (2008) Supramol Chem 20:387CrossRefGoogle Scholar
  28. 28.
    Kříž J, Dybal J, Makrlík E, Budka J, Vaňura P (2008) Supramol Chem 20:487CrossRefGoogle Scholar
  29. 29.
    Makrlík E, Dybal J, Vaňura P (2009) Monatsh Chem 140:29CrossRefGoogle Scholar
  30. 30.
    Makrlík E, Dybal J, Vaňura P (2009) Z Phys Chem 223:713Google Scholar
  31. 31.
    Iwamoto K, Araki K, Shinkai S (1991) Tetrahedron 47:4325CrossRefGoogle Scholar
  32. 32.
    Collins EM, McKervey MA, Madigan E, Moran MB, Ferguson G, Harris SJ (1991) J Chem Soc Perkin Trans 1:3137CrossRefGoogle Scholar
  33. 33.
    Andreetti GD, Calestani G, Ugozzoli F, Arduini A, Ghidini E, Pochini A, Ungaro R (1987) J Incl Phenom Macrocycl Chem 5:123CrossRefGoogle Scholar
  34. 34.
    Rais J (1971) Collect Czech Chem Commun 36:3253Google Scholar
  35. 35.
    Makrlík E, Vaňura P (1985) Talanta 32:423CrossRefGoogle Scholar
  36. 36.
    Makrlík E, Božek F (1998) Polish J Chem 72:949Google Scholar
  37. 37.
    Makrlík E, Hálová J, Kyrš M (1984) Collect Czech Chem Commun 49:39Google Scholar
  38. 38.
    Makrlík E, Vaňura P (1998) ACH Models Chem 135:39Google Scholar
  39. 39.
    Makrlík E, Vaňura P (2006) Z Phys Chem 220:1569Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • E. Makrlík
    • 1
  • J. Budka
    • 2
  • P. Vaňura
    • 2
  • P. Selucký
    • 3
  1. 1.Faculty of Applied SciencesUniversity of West BohemiaPilsenCzech Republic
  2. 2.Institute of Chemical TechnologyPragueCzech Republic
  3. 3.Nuclear Research InstituteŘežCzech Republic

Personalised recommendations