Air-quality assessment of Pico-mountain environment (Azores) by using chemometric and trajectory analyses

  • S. Tsakovski
  • P. Simeonova
  • V. Simeonov
  • M. C. Freitas
  • I. Dionísio
  • A. M. G. Pacheco


This article illustrates the use of chemometrics in the interpretation of aerosol data collected by a seven-wavelength aethalometer at the PICO-NARE observatory, in Pico island, Azores, Portugal. Samples were assessed through k 0-standardized, instrumental neutron activation analysis (k 0-INAA), and concentrations of up to 20 airborne elements were determined. The chemometric analysis by self-organizing maps (SOM) tried to identify groups of similarity for sampling events and chemical tracers, discriminating in this way each group of similarity thus obtained. Additionally, synoptic back trajectories for each of the sampling days distributed into four clusters were calculated, in order to associate the classified groups with possible pollution sources.


Aerosol monitoring Chemometrics Self-organizing maps HYSPLIT models 



One of the authors (V. Simeonov) would like to express his sincere gratitude to the Executive Committee of NAMLS-9 and personally to Dr. M. C. Freitas for financial and moral support. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website ( used in this publication. The authors are also indebted to Prof. Paulo Fialho and Dr. Filipe Barata (Group of Chemistry and Physics of the Atmosphere, Department of Agricultural Sciences, University of Azores, Portugal), respectively, for filter availability and spot identification.


  1. 1.
    Honrath, R.E., Fialho, P.: The azores islands: a unique location for ground based measurements. IGAC Activ. Newslett. 24, 20–28 (2001)Google Scholar
  2. 2.
    Fialho, P., Hansen, A.D.A., Honrath, R.E.: Absorption coefficients by aerosol in remote areas: a new approach to decouple dust and black carbon absorption coefficients using seven-wavelength Aethalometer data. J. Aerosol. Sci. 36, 267–282 (2005)CrossRefGoogle Scholar
  3. 3.
    Lapina, K., Honrath, R.E., Owen, R.C., Val Martín, M., Pfister, G.: Evidence in significant large scale impacts on boreal fires on ozone levels in the midlatitude Northern hemisphere free troposphere. Geophys. Res. Lett. 33, L10815 (2006)CrossRefGoogle Scholar
  4. 4.
    Oltmans, S.J., Levy II, H., Harris, J.M., Merrill, J.T., Moody, J.L., Lathrop, J.A., Cuevas, E., Trainer, M., O’Neil, M.S., Prospero, J.M., Vömel, H., Johnson, B.J.: Summer and spring ozone profiles over the North Atlantic fron ozonesonde measurements. J. Geophys. Res. 101, 29179–29200 (1996)CrossRefGoogle Scholar
  5. 5.
    Owen, R.C., Cooper, O.R., Stohl, A., Honrath, R.E.: An analysis of transport mechanisms of North American emissions to the Central North Atlantic. J. Geophys. Res. 111, 23S58 (2006)CrossRefGoogle Scholar
  6. 6.
    Val Martín, M., Honrath, R.E., Owen, R.C., Pfister, G., Fialho, P., Barata, F.: Significant enhancements of nitrogen oxides, black carbon, and ozon in the North Atlantic lower free troposphere resulting from North American boreal wildfires. J. Geophys. Res. 111, D23S60 (2006)CrossRefGoogle Scholar
  7. 7.
    Albrecht, B.A., Bretherton, C.S., Johnson, D., Scubert, W.H., Frisch, A.S.: The Atlantic startocumulus transition experiment—ASTEX. Bull. Am. Meteorol. Soc. 76, 889–904 (1995)CrossRefGoogle Scholar
  8. 8.
    Honrath, R.E., Owen, R.C., Val Martín, M., Reid, J.S., Lapina, K., Fialho, P., Dziobak, M.P., Kleissl, J., Westphal, D.L.: Regional and hemispheric impacts of anthropogenic and biomass burning emissions on summertime CO and O3 in the North Atlantic lower free troposphere. J. Geophys. Res. 109, D24310 (2004)CrossRefGoogle Scholar
  9. 9.
    De Corte, F.: The k 0-standardization method—a move to the optimization of neutron activation analysis. Aggrege Thesis, Institute for Nuclear Sciences, University of Gent, Gent, Belgium, 1987Google Scholar
  10. 10.
    Freitas, M.C.: The development of k 0-standardized neutron activation analysis with counting using a low energy photon detector. PhD Thesis, Institute for Nuclear Sciences, University of Gent, Gent, Belgium, 1993Google Scholar
  11. 11.
    De Corte, F.: The standardization of standardless NAA. J. Radioanal. Nucl. Chem. 248, 13–20 (2001)CrossRefGoogle Scholar
  12. 12.
    Pacheco, A.M.G., Freitas, M.C., Ventura, M.G., Dionísio, I., Ermakova, E.: Chemical elements in common vegetable components of Portuguese diet, determined by k0-INAA. Nucl. Instrum. Meth. A. 564, 721–728 (2006)CrossRefGoogle Scholar
  13. 13.
    Freitas, M.C., Pacheco, A.M.G., Dionísio, I., Sarmento, S., Baptista, M.S., Vasconcelos, M.T.S.D., Cabral, J.P.: Multianalytical determination of trace elements in atmospheric biomass by k0-INAA, ICP-MS and AAS. Nucl. Instrum. Meth. A. 564, 733–742 (2006)CrossRefGoogle Scholar
  14. 14.
    Blaauw, M.: Software for single-comparator instrumental neutron activation analysis—the k 0-IAEA Program Manual for Version 3.21, International Atomic Energy Agency, Vienna, Austria, and Delft University of Technology, Delft, The Netherlands. (2007)
  15. 15.
    Draxler, R.R., Rolph, G.D.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model, NOAA Air Resources Laboratory, Silver Spring, MD, USA. (2003)
  16. 16.
    Rolph, G.D.: Real-time Environmental Applications and Display sYstem (READY), NOAA Air Resources Laboratory, Silver Spring MD, USA. (2003)
  17. 17.
    Kohonen, T.: Self-Organizing Maps. Wiley, New York (2001)Google Scholar
  18. 18.
    Steinhaus, H.: Sur la division des corp materiels en partiies. Bull. Acad. Pol. Sci. 4, 801–823 (1956)Google Scholar
  19. 19.
    Lloyd, S.: Least square quantification in PCM. IEEE Trans. Inform. Theory. 28, 129–137 (1982)CrossRefGoogle Scholar
  20. 20.
    Draxler, R.R., Hess, G.D.: An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition. Aust. Meteorol. Mag. 47, 295–303 (1998)Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • S. Tsakovski
    • 1
  • P. Simeonova
    • 2
  • V. Simeonov
    • 1
  • M. C. Freitas
    • 3
  • I. Dionísio
    • 3
  • A. M. G. Pacheco
    • 4
  1. 1.Faculty of ChemistryUniversity of Sofia “St. Kl. Okhridski”SofiaBulgaria
  2. 2.Laboratory of Environmental Physics, Georgi Nadjakov Institute of Solid State PhysicsBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Reactor-ITNTechnological and Nuclear InstituteSacavémPortugal
  4. 4.CERENA-ISTTechnical University of LisbonLisbonPortugal

Personalised recommendations