An emergency response intercomparison exercise using a synthetically generated gamma-ray spectrum

  • M. Dowdall
  • Ø. G. Selnæs
  • W. J. F. Standring
  • S. P. Nielsen
  • L. del Risco Norrlid
  • S. E. Pálsson
  • T. Renvall
  • R. Singh Sidhu


Although high resolution gamma ray spectrometry serves as the primary analytical technique in emergency response situations, chances for laboratories to practice analysing the type of spectra that may be expected in the early phase of such a situation are limited. This problem is more acute for laboratories in countries that have no nuclear facilities. The analysis of synthetically generated spectra may serve as a useful surrogate for actual spectra; this paper reports the results of a multilateral intercomparison exercise conducted using such a spectrum. Results indicate that the laboratories involved appear to have no problems identifying radioactive isotopes that regularly appear in national and international intercomparisons or exercises. However, some problems are evident for isotopes that are less often encountered which may, however, occur during the early phases of a nuclear accident. Isotopes prone to true coincidence summation proved also to be difficult with regard to correction of activities in some cases. The synthesized spectrum constituted a useful means of comparative analysis of complex spectra multilaterally without the impracticalities of using a sample drawn from a reactor.


Gamma spectrometry Synthetic spectra Proficiency test Emergency preparedness 



The work reported in this project was funded by the B-Programme of the Nordic Nuclear Safety Research (NKS) Contract No: AFT/B(08)5. The authors also wish to acknowledge the time and effort invested by all participants in the exercise and the help and advice provided by F. Ugletveit (NRPA), R. Plentada and L.-E. DeGeer (CTBTO).


  1. 1.
    Ugletveit, F., Molhoek, W.: Ongoing efforts to improve the international nuclear and radiological emergency response. Rad. Prot. Dosim. 109, 149–150 (2004)CrossRefGoogle Scholar
  2. 2.
    Nielsen, S.P.: Quantitative evaluation of gamma-spectrum analysis methods using IAEA test spectra. Nucl. Instrum. Meth. 192, 433–438 (1982)CrossRefGoogle Scholar
  3. 3.
    Blaauw, M., Osorio Fernandez, V., Westmeier, W.: IAEA gamma-ray spectra for testing of spectrum analysis software. Nucl. Instrum. Meth. A387, 410–415 (1997)Google Scholar
  4. 4.
    Blaauw, M., Osorio Fernandez, V., van Espen, P., Bernasconi, G., Capote, R., Manh Dung, N.H., Molla, N.I.: The 1995 IAEA intercomparison of gamma-ray spectrum analysis software. Nucl. Instrum. Meth. A387, 416–432 (1997)Google Scholar
  5. 5.
    Decker, K.M., Sanderson, C.G.: A reevaluation of commercial IBM PC software for the analysis of low-level environmental gamma-ray spectra. Int. J. Radiat. Appl. Instrum. 43, 232–337 (1992)CrossRefGoogle Scholar
  6. 6.
    Nikkinen, M.: The use of synthetic spectra to test the preparedness to evaluate and analyze complex gamma spectra. NKS Report No. 43, Nordic Nuclear Safety Research, Roskilde, Denmark, ISBN 87-7893-096-0, 80 p (2001)Google Scholar
  7. 7.
    Karhu, P., De Geer, L.-E., McWilliams, E., Plenteda, R., Werzia, R.: Proficiency test for gamma spectroscopic analysis with a simulated fission product reference spectrum. Appl. Radiat. Isotop. 64, 1334–1339 (2006)CrossRefGoogle Scholar
  8. 8.
    Decker, K.M., Sanderson, C.G., Greenlaw, P.: Report of the department of energy office of environmental management gamma. Spectrometry Data Validation Program, USDOE, Report EML-586, 92 p (1996)Google Scholar
  9. 9.
    Booth, F.H.K., Decker, K.M., Bath, R.J., Bottrell, D.W., Wright, K.L.: Synthetic and virtual environmental media (SAVEM). WM’02 Conference, 24–28 Feb 2002, Tucson, AZ. (2002). Accessed Feb 2009
  10. 10.
    Plenteda, R.: A Monte Carlo based virtual gamma spectroscopy laboratory, Universitaetsbibliothek der Technischen Universitaet Wien, Wien, Austria, 118 p (2002)Google Scholar
  11. 11.
    Larsen, E., Naadland Holo, E., Saltbones, J., Stokke, E.: Kola Konsekvensanalyse. Vurdering av Dosemessige Konsekvenser av en Eventuell Ulykke ved Kola Kjernekraftverk. StrålevernRapport 1999:Nr 10, Statens strålevern, Østerås, Norway, 59 p (In Norwegian) (1999)Google Scholar
  12. 12.
    IEEE.: Nuclear instrumentation—MCA histogram data interchange format for nuclear spectroscopy. IEC 61455 Ed. 1.0 b:1995, 23 p (1995)Google Scholar
  13. 13.
    Debertin, K., Schotzig, U.: Coincidence summing corrections in Ge(Li)-spectrometry at low source-to-detector distances. Nucl. Instrum. Meth. Phys. Res. 158, 471–477 (1979)CrossRefGoogle Scholar
  14. 14.
    Morel, J., Chauvenet, B., Kadachi, A.: Coincidence summing corrections in gamma-ray spectrometry for normalized geometries. Int. J. Appl. Radiat. Isotop. 34/8, 1115–1122 (1983)CrossRefGoogle Scholar
  15. 15.
    Sinkko, K., Aaltonen, H.: Calculation of the true coincidence summing correction for different sample geometries in gamma-ray spectrometry. Finnish Centre for Radiation and Nuclear Safety, Report STUK-B-VALO 40, 14 p (1985)Google Scholar
  16. 16.
    De Felice, P., Angelini, P., Fazio, A., Biagini, R.: Fast procedures for coincidence-summing correction in γ-ray spectrometry. Appl. Radiat. Isotop. 52, 745–752 (2000)CrossRefGoogle Scholar
  17. 17.
    Lepy, M.-C., Brun, P., Collin, C., Plagnard, J.: Experimental validation of coincidence summing corrections computed by the ETNA software. Proceedings of the 15th International Conference on Radionuclide Metrology and its Applications, October-November 2006. Appl. Radiat. Isotop. 64/10–11, 1340–1345 (2006)CrossRefGoogle Scholar
  18. 18.
    Arnold, D., Sima, O.: Application of GESPECOR software for the calculation of coincidence summing effects in special cases. Appl. Radiat. Isotop. 60(1–2), 167–172 (2004)CrossRefGoogle Scholar
  19. 19.
    Sudár, S.: “TrueCoinc”, a software utility for calculation of the true coincidence correction. IAEA TECDOC 1275, pp. 37–48. International Atomic Energy Agency, Vienna (2002)Google Scholar
  20. 20.
    ICRP.: Age-dependent doses to members of the public from intake of radionuclides: Part 5 Compilation of ingestion and inhalation dose coefficients. Ann. ICRP. 26/1 ICRP Publication 72 (1996)Google Scholar
  21. 21.
    Klemola, S.K.: Inter-laboratory comparisons of short-lived gamma-emitting radionuclides in nuclear reactor water. Appl. Radiat. Isotop. 66, 760–763 (2008)CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • M. Dowdall
    • 1
  • Ø. G. Selnæs
    • 1
  • W. J. F. Standring
    • 1
  • S. P. Nielsen
    • 5
  • L. del Risco Norrlid
    • 4
  • S. E. Pálsson
    • 6
  • T. Renvall
    • 3
  • R. Singh Sidhu
    • 2
  1. 1.Norwegian Radiation Protection AuthorityØsteråsNorway
  2. 2.Institute for Energy Technology (IFE)KjellerNorway
  3. 3.STUK—Radiation and Nuclear Safety AuthorityHelsinkiFinland
  4. 4.Swedish Radiation Safety AuthorityStockholmSweden
  5. 5.Riso National LaboratoryRoskildeDenmark
  6. 6.Icelandic Radiation Protection InstituteReykjavikIceland

Personalised recommendations