Translocation of radioactivity from substrate to macromycetes in the Crucea (Romania) uranium mining area

  • Catalin Tanase
  • Aurel Pui
  • Adrian Oprea
  • Karin Popa


The present study follows the extent of translocation radioactivity from the substrates of the Crucea uranium mining area to the macromycetes spontaneously occurred during June–October 2008. To this end, radioactivity measurements (gross α + β and 137Cs) on both macromycetes and their substrates were made. The resultants obtained were confirmed by FT-IR spectroscopy, evidencing the presence of characteristic bands around of 910 cm−1, corresponding to the asymmetric stretching vibration of the uranyl unit and to the interaction between the UO2 2+ ions and the group belonging to various cellular components.


Crucea uranium mine Macromycetes Total α + β radioactivity FT-IR spectroscopy Bioradioremediation 137Cs 



This work was supported by the project ANCSCNCSIS-175/2006.


  1. 1.
    Tykva, R., Berg, D. (eds.): Man-Made and Natural Radioactivity in Environmental Pollution and Radiochronology. Kluwer, Dordrecht (2004)Google Scholar
  2. 2.
    Fernandes, H.M., Franklin, M.R., Veiga, L.H.S., Freitas, P., Gomiero, L.A.: Management of uranium mill tailing: geochemical processes and radiological risk assessment. J. Environ. Radioact. 30, 69–95 (1996)CrossRefGoogle Scholar
  3. 3.
    Yii, M.W., Zaharudin, A., Abdul-Kadir, I.: Distribution of naturally occurring radionuclides activity concentration in East Malaysian marine sediment. Appl. Radiat. Isot. 67, 630–635 (2009)CrossRefGoogle Scholar
  4. 4.
    Petrescu, L., Bilal, E.: Plant availability of uranium in contaminated soil from Crucea mine (Romania). Environ. Geosci. 10, 123–135 (2003)CrossRefGoogle Scholar
  5. 5.
    Petrescu, L., Bilal, E., Carpth, J.: Natural actinides studies in conifers grown on uranium mining dumps (the East Carpathians, Romania). Earth Environ. Sci. 1, 63–80 (2006)Google Scholar
  6. 6.
    Petrescu, L., Bilal, E.: Environmental impact assessment of a uranium mine, East Carpathians, Romania: metal distribution and partitioning of U and Th. Carpath J. Earth Environ. Sci. 2, 39–50 (2007)Google Scholar
  7. 7.
    Terry, N., Banuelos, G.: Phytoremediation of contaminated soils and water, 460 pp. CRC Boca Raton, USA (2000)Google Scholar
  8. 8.
    Soudek, P., Petrová, Š., Benešova, D., Tykva, R., Vaňková, R., Vaněk, T.: Comparison of Ra-226 nuclide from soil by three woody species Betula pendula, Sambucus nigra and Alnus glutinosa during the vegetation period. J. Environ. Radioact. 97, 76–82 (2007)CrossRefGoogle Scholar
  9. 9.
    Popa, K., Tykva, R., Podracka, E., Humelnicu, D.: Ra-226 translocation from soil to selected vegetation in the Crucea (Romania) uranium mining area. J. Radioanal. Nucl. Chem. 278, 211–213 (2008)CrossRefGoogle Scholar
  10. 10.
    Krpata, D., Fitz, W., Peintner, U., Langer, I., Schweiger, P.: Bioconcentration of zinc and cadmium in ectomycorrhizal fungi and associated aspen trees as affected by level of pollution. Environ. Pollut. 157, 280–286 (2009)CrossRefGoogle Scholar
  11. 11.
    Kirk, P.M., Cannon, P.F., David, J.C., Stalpers, J.A.: Ainsworth and Bisby’s Dictionary of the Fungi, 9th edn, 624 pp. CABI Bioscience, UK (2001)Google Scholar
  12. 12.
    Elliott, G.N., Worgan, H., Broadhurst, D., Draper, J., Scullion, J.: Soil differentiation using fingerprint Fourier transform infrared spectroscopy, chemometrics and genetic algorithm-based feature selection. Soil Biol. Biochem. 39, 2888–2896 (2007)CrossRefGoogle Scholar
  13. 13.
    Paim, S., Linhares, L.F., Mangrich, A.S., Martin, J.P.: Characterization of fungal melanins and soil humic acids by chemical-analysis and infrared-spectroscopy. Biol Fertil. Soils 10, 72–76 (1990)Google Scholar
  14. 14.
    Tanase, C., Pui, A., Olariu, R., Cozma, D.G.: Analysis of heavy metals content in the soil and in the macromycetes species growing on mine waste dumps. Rev. Chim. (Bucharest) 59, 479–485 (2008)Google Scholar
  15. 15.
    Merroun, M., Hennig, C., Rossberg, A., Reich, T., Selenska-Pobell, S.: Characterization of U(VI)-acidithiobacillus ferrooxidans complexes using EXAFS, transmission electron microscopy, and energy-dispersive X-ray analysis. Radiochim. Acta 91, 583–591 (2003)CrossRefGoogle Scholar
  16. 16.
    Popa, K., Cecal, A., Drochioiu, G., Pui, A., Humelnicu, D.: Saccharomyces cerevisiae as uranium bioaccumulating material: the influence of contact time, pH and anion nature. Nukleonika 48, 121–125 (2003)Google Scholar
  17. 17.
    Michell, A.J., Scurfield, G.: Composition of extracted fungal cell walls as indicated by infrared spectroscopy. Arch. Biochem. Biophys. 120, 628–637 (1967)CrossRefGoogle Scholar
  18. 18.
    Jilkine, K., Gough, K.M., Julian, R., Kaminskyj, S.G.W.: A sensitive method for examining whole-cell biochemical composition in single cells of filamentous fungi using synchrotron FTIR spectromicroscopy. J. Inorg. Biochem. 102, 540–546 (2008)CrossRefGoogle Scholar
  19. 19.
    Szeghalmi, A., Kaminsky, S., Gough, K.M.: A synchrotron FTIR microspectroscopy investigation of fungal hyphae grown under optimal and stressed conditions. Anal. Bioanal. Chem. 387, 1779–1789 (2007)CrossRefGoogle Scholar
  20. 20.
    Tanase, C., Pui, A.: Application of FT spectroscopy in the study of fungi. Rev. Chim. (Bucharest) 59, 212–215 (2008)Google Scholar
  21. 21.
    Stuard, B.: Infrared spectroscopy: fundamentals and applications, 203 pp. Wiley-Chichester, UK (2004)Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Catalin Tanase
    • 1
  • Aurel Pui
    • 2
  • Adrian Oprea
    • 1
  • Karin Popa
    • 2
  1. 1.Department of BiologyAl.I. Cuza UniversityIasiRomania
  2. 2.Department of ChemistryAl.I. Cuza UniversityIasiRomania

Personalised recommendations