Adsorption of cesium on domestic bentonites

  • Michal Galamboš
  • Jana Kufčáková
  • Pavol Rajec


Bentonite is a natural clay and one of the most promising candidates for use as a buffer material in the geological disposal systems for spent nuclear fuel and high-level nuclear waste. It is intended to isolate metal canisters with highly radioactive waste products from the surrounding rocks because of its ability to retard the movement of radionuclides by adsorption. Slovak Republic avails of many significant deposits of bentonites. Adsorption of Cs on five Slovak bentonites of deposits (Jelšový potok, Kopernica, Lieskovec, Lastovce and Dolná Ves) has been studied with the use of batch technique. In the case of Dolná Ves deposit, the mixed-layer illite–smectite has been identified as the main clay component. Natural and irradiated samples, in two different kinds of grain size: 45 and 250 μm have been used in the experiments. The adsorptions of Cs on bentonite under various experimental conditions, such as contact time, adsorbent and adsorbate concentrations have been studied. The Cation Exchange Capacity values for particular deposits drop in the following order: Jelšový potok > Kopernica > Lieskovec > Lastovce > Dolná Ves. Bentonites irradiated samples with 390 kGy have shown higher specific surface and higher values of the adsorption capacity. Distribution coefficients have been determined for bentonite-cesium solution system as a function of contact time and adsorbate and adsorbent concentration. The data have been interpreted in terms of Langmuir isotherm. The uptake of Cs has been rapid and the adsorption of cesium has increased with increasing metal concentrations. The adsorption percentage has decreased with increasing of metal concentrations. Adsorption of Cs has been suppressed by presence of Ca2+ more than Na+ cation. Sorption experiments carried out show that the most suitable materials intended for use as barriers surrounding a canister of spent nuclear fuel are bentonites of the Jelšový potok and Kopernica deposits.


Adsorption Bentonite Illite–smectite Montmorillonite Cesium Cation exchange capacity Deep geological repository 



This work has been supported by Task of research and development no. 2003 SP/26 028 0C 00/028 0C 02. Authors are grateful to Mgr. Pavel Babic, MA for his help with translation of this paper.


  1. 1.
    Západoslovenská energetika, A.S. (cited 23. March 2009). Last update: 2009. Available:
  2. 2.
    Hsu, C.H.-N., Chang, K.-P.: Sorption and desorption behaviour on soil components. Appl. Radiat. Isot. 45(4), 433–437 (1994)CrossRefGoogle Scholar
  3. 3.
    Willms, C., Li, Z., Allen, L., Evans, Ch.V.: Desorption of cesium from kaolinite and illite using alkylammonium salts. Appl. Clay Sci. 25(3–4), 125–133 (2004)CrossRefGoogle Scholar
  4. 4.
    Vejsada, J., Hradil, D., Řanda, Z., Jelínek, E., Štuklík, K.: Adsorption of cesium on Czech smectite-rich clays—a comparative study. Appl. Clay Sci. 30, 53–66 (2005)CrossRefGoogle Scholar
  5. 5.
    Melkior, T., Yahiaoui, S., Motellier, S., Thoby, D., Tevissen, E.: Cesium sorption and diffusion in Bure mudrock samples. Appl. Clay Sci. 29, 172–186 (2005)CrossRefGoogle Scholar
  6. 6.
    Macasek, F., Navratil, J., Dulanska, S.: Magnetic sorbent for soil remediation—a waste for waste treatment. Sep. Sci. Technol. 37, 3673–3691 (2002)CrossRefGoogle Scholar
  7. 7.
    Navrtáil, O., Hála, J., Kopunec, R., Lešetický, L., Macášek, F., Mikulaj, V.: Nuclear Chemistry, vol. 1st, p. 101. Academia, Praha (1985)Google Scholar
  8. 8.
    Tolgyessy, J., Harangozó, M.: Radioecology, vol. 1st, p. 14. Matej Bel University, Faculty of Natural Sciences, Banská Bystrica (2000)Google Scholar
  9. 9.
    Lieser, K.H., Steinkopff, T.: Chemistry of radioactive cesium in the hydrosphere and in the geosphere. Radiochim. Acta 48, 79–86 (1989)Google Scholar
  10. 10.
    National Council on Radiation Protection & Measurement.: Cesium-137 in the environment: Radioecology and approaches to assessment and management. NCRP Report No. 154. National Council on Radiation Protection & Measurements, Bethesda, MD (Paperback, April 2007)Google Scholar
  11. 11.
    Gregor, M., Číčel, B.: Bentonie and its use, 1st edn. SAV, Bratislava (1969)Google Scholar
  12. 12.
    Číčel, B., Komadel, P., Bednáriková, E., Madejová, J.: Mineralogical composition and distribution of Si, Al, Fe, Mg and Ca in the fine fractions of some Czech and Slovak bentonites. Geol. Carpath. Clays 43, 3–7 (1992)Google Scholar
  13. 13.
    Khan, S.A., Rehman, R.-U., Khan, M.A.: Sorption of cesium on bentonite. Waste Manag. 14(7), 629–642 (1994)CrossRefGoogle Scholar
  14. 14.
    Bors, J., Dultz, S., Riebe, B.: Organophilic bentonites as adsorbents for radionuclides. I. Adsorption of anionic and cationic fission products. Appl. Clay Sci. 16(1–2), 1–13 (2000)CrossRefGoogle Scholar
  15. 15.
    Šucha, V.: Clays in Geological Processes, 1st edn, p. 46. Acta Geologica Universitas Comenianae, Bratislava (2001)Google Scholar
  16. 16.
    Khan, S.A.: Sorption of the long-lived radionuclides caesium-134, strontium-85 and cobalt-60 on bentonite. J. Radioanal. Nucl. Chem. 258(1), 3–6 (2003)CrossRefGoogle Scholar
  17. 17.
    Andrejkovičová, S., Madejová, J., Czímerová, A., Galko, I., Dohrmann, R., Komadel, P.: Mineralogy and chemistry of Fe-rich bentonite Lieskovec deposit (Central Slovakia). Geol. Carp. 57(5), 371–378 (2006)Google Scholar
  18. 18.
    Rajec, P., Matel, L., Orechovská, J., Šucha, V.: Sorption of radionuclides on inorganic sorbents. J. Radioanal. Nucl. Chem. 208(2), 477–486 (1996)CrossRefGoogle Scholar
  19. 19.
    Dyer, A., Chow, J.K.K., Umar, I.M.: The uptake of caesium and strontium radioisotopes onto clays. J. Mater. Chem. 10(12), 2734–2740 (2000)CrossRefGoogle Scholar
  20. 20.
    Gu, B.X., Wang, L.M., Minc, L.D., Ewing, R.C.: Temperature effects on the radiation stability and ion exchange capacity of smectites. J. Nucl. Mat. 297, 345–354 (2001)CrossRefGoogle Scholar
  21. 21.
    Kufčáková, J., Galamboš, M., Rajec, P.: Sorption of strontium on selected group of bentonites. ChemZi 1/3, 270–271 (2005)Google Scholar
  22. 22.
    Galamboš, M., Kufčáková, J., Rajec, P.: Sorption of strontium on Slovak bentonites. J. Nucl. Chem. (9 March, 2009 accepted for publication)Google Scholar
  23. 23.
    Shaban, I.S., Macasek, F.: Influence of humic acid on sorption of cesium and strontium on montmorillonite. J. Radioanal. Nucl. Chem. 229(1–2), 73–78 (1998)CrossRefGoogle Scholar
  24. 24.
    Missana, T., García-Gutiérrez, M., Alonso, Ú.: Kinetics and irreversibility of cesium and uranium sorption onto bentonite colloids in a deep granitic environment. Appl. Clay Sci. 26, 137–150 (2004)CrossRefGoogle Scholar
  25. 25.
    Kónya, J., Nagy, N.M., Nemes, Z.: The effect of mineral composition on the sorption of cesium ions on geological formations. J. Colloid Interface Sci. 290, 350–356 (2005)CrossRefGoogle Scholar
  26. 26.
    Kufčáková, J., Galamboš, M., Rajec, P.: Sorption of strontium on bentonites from Slovak deposits. XXVII: Days of radiation protection: collection of abstracts. Liptovský Ján 119–120 (2005)Google Scholar
  27. 27.
    Galamboš, M., Kufčáková, J., Rajec, P., Paučová, V.: Adsorption of Sr-ions on Slovak bentonites—effect of pH. IX: days of Banská Štiavnica 2007: collection of abstracts. Zvolen 81–87 (2007)Google Scholar
  28. 28.
    Stríček, I., Šucha, V., Uhlík, P., Madejová, J., Galko, I.: Mineral stability of Fe-rich bentonite in the Mock-Up-Cz experiment. Geol. Carp. 60(4) (2009)Google Scholar
  29. 29.
    Plecas, I.: Leaching of 137Cs from spent ion exchange resins in cement–bentonite clay matrix. Acta Chim. Slov. 50, 593–596 (2003)Google Scholar
  30. 30.
    Murali, M.S., Mathur, J.N.: Sorption characteristics of Am(III), Sr(II) and Cs(I) on bentonite and granite. J. Radioanal. Nucl. Chem. 254(1), 129–136 (2002)CrossRefGoogle Scholar
  31. 31.
    Pushkareva, R., Kalinichenko, E., Lytovchenko, A., Pushkarev, A., Kadochnikov, V., Plastynina, M.: Irradiation effect on physico-chemical properties of clay minerals. Appl. Clay Sci. 21(1–2), 117–123 (2002)CrossRefGoogle Scholar
  32. 32.
    Galamboš, M., Kufčáková, J., Rajec, P.: Bentonites from Slovak deposits—study of sorption characteristics. XXVIII: days of radiation protection: collection of abstracts. Luhačovice 97–99 (2006)Google Scholar
  33. 33.
    Galamboš, M., Paučová, V.: Student scientific conference of UK PriF in Bratislava , vol. 2 (2007) p. 20Google Scholar
  34. 34.
    Galamboš, M., Kufčáková, J., Rajec, P.: Influence of competitive ions on sorption of strontium on Slovak bentonites. XXX: days of radiation protection: collection of abstracts. Liptovský Ján 179–183 (2008)Google Scholar
  35. 35.
    Hurel, C., Marmier, N., Bourg, A.C., Fromage, F.: Sorption of Cs and Rb on purified and crude MX-80 bentonite in various electrolytes. J. Radioanal. Nucl. Chem. 279(1), 113–119 (2008)CrossRefGoogle Scholar
  36. 36.
    Stríček, I., Šucha, V., Uhlík, P.: Gamma-irradiation effects on smectite properties. 4. Mid-European clay conference, Zakopane, Poland, Abstracts. Mineralogia: Special papers, 33 157 (2008)Google Scholar
  37. 37.
    Holmboe, M., Wold, S., Jonsson, M., García-García, S.: Effects of γ-irradiation on the stability of colloidal Na+–montmorillonite dispersion. Appl. Clay Sci. 43, 86–90 (2009)CrossRefGoogle Scholar
  38. 38.
    Rajec, P., Šucha, V., Eberl, D.D., Środoń, J., Elsass, F.: Effect of illite particle shape on cesium sorption. Clays Clay Miner. 47(6), 755–760 (1999)CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Michal Galamboš
    • 1
  • Jana Kufčáková
    • 1
  • Pavol Rajec
    • 1
  1. 1.Department of Nuclear Chemistry, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovak Republic

Personalised recommendations