Journal of Radioanalytical and Nuclear Chemistry

, Volume 281, Issue 3, pp 531–534 | Cite as

A green approach for sequential extraction of heavy metals from Li irradiated Au target



An aqueous biphasic extraction system was designed using different molecular weights of polyethylene glycol and concentrated salt solutions of sodium sulphate to separate the heavy metals, Hg, Tl and Pb from Li irradiated Au matrix. All the four elements could be separated from one another by this extraction process by simply optimizing the salt rich phase, the pH of the salt rich phase and the molecular weight of the polymer rich phase.


Aqueous biphasic extraction Heavy metals Polyethylene glycol 7Li projectile Gold target 



The authors gratefully acknowledge the Pelletron operation staff of BARC-TIFR Pelletron for their sincere help. This work has been carried out under Department of Atomic Energy, Govt. of India, project TADDS (PIC No.: 11-R& D- SIN – 4.02-0100).


  1. 1.
    Walter, H., Johansson, G. (eds.): Methods in Enzymology, vol. 228. Academic Press, New York (1994)Google Scholar
  2. 2.
    Albertsson, P.A.: Partition of Cell Particles and Macromolecules. Wiley, New York (1986)Google Scholar
  3. 3.
    Rogers, R.D., Bond, A.H., Bauer, C.B.: Metal ion separation in polyethylene glycol based aqueous biphasic systems. Sep. Sci. Technol. 28, 1091–1126 (1993)CrossRefGoogle Scholar
  4. 4.
    Spear, S.K., Griffin, S.T., Huddleston, J.G., Rogers, R.D.: Radiopharmaceutical and hydrometallurgical separations of perrhenate using aqueous biphasic systems and the analogous aqueous biphasic extraction chromatographic resins. Ind. Eng. Chem. Res. 39, 3173–3180 (2000)CrossRefGoogle Scholar
  5. 5.
    Krishna, A.K., Govil, P.K.: Assessment of heavy metal contamination in soils around Manali industrial area, Chennai, Southern India. Environ. Geol. 47, 38–44 (2004)CrossRefGoogle Scholar
  6. 6.
    Pueyo, M., Sastre, J., Hernández, E., Vidal, M., López-Sánchez, J.F., Rauret, G.: Prediction of trace element mobility in contaminated soils by sequential extraction. J. Environ. Qual. 32, 2054–2066 (2003)CrossRefGoogle Scholar
  7. 7.
    Kennedy, V.H., Sanchez, A.L., Oughton, D.H., Rowland, A.P.: Use of single and sequential chemical extractants to assess radionuclide and heavy metal availability from soils for root uptake. Analyst 122, 89–100 (1997)CrossRefGoogle Scholar
  8. 8.
    Roy, K., Lahiri, S.: Species dependent radiotracer study of Cr(VI) and Cr(III) using an aqueous biphasic system. Radiochim. Acta 96, 49–54 (2008)CrossRefGoogle Scholar
  9. 9.
    Roy, K., Lahiri, S.: A green method for synthesis of radioactive gold nanoparticles. Green Chem. 8, 1063–1066 (2006)CrossRefGoogle Scholar
  10. 10.
    Roy, K., Lahiri, S.: Production and separation of astatine radionuclides: some new addition to astatine chemistry. Appl. Radiat. Isot. 66, 571–576 (2008)CrossRefGoogle Scholar
  11. 11.
    Roy, K., Lahiri, S.: In situ gamma-radiation: one step environmentally benign method to produce gold-palladium bimetallic nanoparticles. Anal. Chem. 80, 7504–7507 (2008)CrossRefGoogle Scholar
  12. 12.
    Verweij, W.: CHEAQS PRO: a program for calculating chemical equilibria in aquatic systems. (2005). Accessed 10 October 2008

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Chemical Sciences DivisionSaha Institute of Nuclear PhysicsKolkataIndia
  2. 2.Radiation, Radionuclides & Reactors Department, Faculty of Applied SciencesDelft University of Technology DelftThe Netherlands

Personalised recommendations