HPLC-ICP-MS for a comparative study on the extraction approaches for arsenic speciation in terrestrial plant, Ceratophyllum demersum

  • J. Zheng
  • H. Hintelmann


For the determination of arsenic compounds in terrestrial plant samples, a crucial step is the efficient extraction of arsenic from the solid plant matrix. However, the use of methanol-water extraction often resulted in low extraction efficiencies of less than 50%. In this study, eight solid-liquid extraction procedures (mainly based on mechanical mixing and sonication) were evaluated for the recovery of arsenic species from a submerged freshwater plant, coontail (Ceratophyllum demersum), collected in Moira River, Ontario, Canada. Speciation of As in the extracts was carried out with both anion-, and cation-exchange HPLC with sector-field inductively coupled plasma mass spectrometric (SF-ICP-MS) detection. The results obtained depended critically on the extraction solvents used in different extraction procedures. Extraction with methanol-water led only to 9%–44% recoveries of As. A high extraction yield (approximately 82%) was obtained by water extraction. Alkaline hydrolysis also resulted in high extraction efficiencies (86%–98%), but severe oxidation of As(III) to As(V) was observed. A protease enzymatic extraction led to a recovery of 48%. Approximately 0.5% of the total As in the plant sample was lipid-soluble. It was found that the extraction of inorganic arsenic species was suppressed by the presence of methanol in the extraction solvents, while high content of methanol in the extraction solvents was effective for the extraction of organic arsenic species. Therefore, it is recommended to perform the extraction both with water alone and with methanol-water (9+1, v/v), in order to obtain the complete As species profile in terrestrial plants.


Arsenic Arsenic Species TMAO Cellulose Nitrate Filter Arsenic Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. A. Frcesconi, J. S. Edmonds, Adv. Inorg. Chem., 44 (1997) 147.CrossRefGoogle Scholar
  2. 2.
    W. R. Cullen, K. J. Reimer, Chem. Rev., 89 (1989) 713.CrossRefGoogle Scholar
  3. 3.
    L. Q. Ma, K. M. Komar, C. Tu, W. Zhang, Y. Cai, E. D. Kennelley, Nature, 409 (2001) 579.CrossRefGoogle Scholar
  4. 4.
    R. Lobinski, J. Szpunar, J. Anal. Chim. Acta, 400 (1999) 321.CrossRefGoogle Scholar
  5. 5.
    J. Zheng, W. Goessler, W. Kosmus, Mikrochim. Acta, 130 (1998), 71.Google Scholar
  6. 6.
    A. D. Madsen, W. Goessler, S. N. Pedersen, K. A. Francesconi, J. Anal. At. Spectrom., 15 (2000) 657.CrossRefGoogle Scholar
  7. 7.
    H. Chassaigne, V. Vacchina, R. Lobinski, Trends Anal. Chem., 19 (2000) 300.CrossRefGoogle Scholar
  8. 8.
    Y. Shibata, M. Morita, Appl. Organomet. Chem., 6 (1992) 343.CrossRefGoogle Scholar
  9. 9.
    D. Kuehnelt, W. Goessler, K. J. Irgolic, Appl. Organomet. Chem., 11 (1997) 289.CrossRefGoogle Scholar
  10. 10.
    A. Geiszinger, W. Goessler, W. Kosmus, Appl. Organomet. Chem., 16 (2002) 343.Google Scholar
  11. 11.
    I. Koch, L. Wang, C. A. Ollson, W. R. Cullen, K. J. Reimer, Environ. Sci. Technol., 34 (2000) 200.CrossRefGoogle Scholar
  12. 12.
    I. Koch, J. Feldmann, L. Wang, P. Andrewes, K. J. Reimer, W. R. Cullen, Sci. Total Environ., 236 (1999) 101.CrossRefGoogle Scholar
  13. 13.
    EPA method 200.8, Determination of trace elements in waters and wastes by inductively coupled plasma-mass spectrometry. Revision 5.4. 1994.Google Scholar
  14. 14.
    J. Zheng, H. Hintelmann, B. Dimock, M. S. Dzurko, Anal. Bioanal. Chem., 377 (2003) 14.CrossRefGoogle Scholar
  15. 15.
    K. Hanaoka, Y. Tanaka, Y. Nagata, K. Yoshida, T. Kaise, Appl. Organomet. Chem., 15 (2001) 299.CrossRefGoogle Scholar
  16. 16.
    K. L. Ackley, C. B’Hymer, K. L. Sutton, J. A. Caruso, J. Anal. At. Spectrom., 14 (1999) 845.CrossRefGoogle Scholar
  17. 17.
    J. Kirby, W. Maher, J. Anal. At. Spectrom., 17 (2002) 838.CrossRefGoogle Scholar
  18. 18.
    P. A. Gallagher, J. A. Shoemaker, X. Wei, C. A. Brockhoffschwegel, J. T. Creed, Fresenius J. Anal. Chem., 369 (2001) 71.CrossRefGoogle Scholar
  19. 19.
    W. Goessler, D. Kuehnelt, C. Schlagenhaufen, Z. Slejkovec, K. J. Irgolic, J. Anal. At. Spectrom., 13 (1998) 183.CrossRefGoogle Scholar
  20. 20.
    D. Kuehnelt, J. Lintschinger, W. Goessler, Appl. Organomet. Chem., 14 (2000) 411.CrossRefGoogle Scholar
  21. 21.
    C. Casiot, J. Szpunar, R. Lobinski, M. Potin-Gautier, J. Anal. At. Spectrom., 14 (1999) 645.CrossRefGoogle Scholar
  22. 22.
    A. N. Parks, P. A. Gallagher, C. A. Schwegel, A. H. Ackerman, J. T. Creed, Poster P-Ei-023, European Winter Plasma Conference, Garmisch-Partenkirchen, Germany, Jan. 10–17, 2003.Google Scholar
  23. 23.
    N. Gilon, A. Astruc, M. Astruc, M. Potin-Gautier, Appl. Organomet. Chem., 9 (1995) 623.CrossRefGoogle Scholar
  24. 24.
    J. Zheng, W. Goessler, W. Kosmus, Trace Elem. Electrol., 15 (1998) 70.Google Scholar
  25. 25.
    K. Hanaoka, W. Goessler, K. Yoshida, Y. Fujitaka, T. Kaise, K. J. Irgolic, Appl. Organomet. Chem., 13 (1999) 765.CrossRefGoogle Scholar
  26. 26.
    J. Mattusch, R. Wennrich, A. Schmidt, W. Reisser, Fresenius J. Anal. Chem., 366 (2000) 200.CrossRefGoogle Scholar
  27. 27.
    K. Francesconi, P. Visoottiviseth, W. Sridokchan, W. Goessler, Sci. Total Environ., 284 (2002) 27.CrossRefGoogle Scholar
  28. 28.
    W. Zhang, Y. Cai, C. Tu, L. Q. Ma, Sci. Total Environ., 300 (2002) 167.CrossRefGoogle Scholar
  29. 29.
    M. Quaghebeur, Z. Rengel, M. Smirk, J. Anal. At. Spectrom., 18 (2003) 128.CrossRefGoogle Scholar
  30. 30.
    K. A. Mir, A. Rutter, I. Koch, P. Smith, K. J. Reimer, J. S. Poland, Talanta, 72 (2007) 1507.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Nakaminato Laboratory for Marine Radioecology, Environmental Radiation Effects Research GroupNational Institute of Radiological SciencesIbarakiJapan
  2. 2.Department of ChemistryTrent UniversityPeterboroughCanada

Personalised recommendations