Advertisement

Application of energy dispersive X-ray fluorescence for the determination of metallic impurities in ThO2

  • V. Natarajan
  • B. Rajeswari
  • B. A. Dhawale
  • N. S. Hon
  • S. V. Godbole
  • V. K. Manchanda
Article

Abstract

Energy dispersive X-ray fluorescence (EDXRF) spectrometric methods have been developed for the determination of some common metallic impurities in ThO2 matrix. A series of ThO2 standards containing the analyte impurities in the range 10–100 (or 100–500) μg/g was prepared synthetically. The spectrometer conditions were optimized to obtain calibration plots for the various analytes. The accuracy and precision of the developed methodology for regular assay of ThO2 was evaluated by analyzing three synthetic samples. Further three secondary ThO2 standards were analyzed by EDRXF to check the developed methods. The determined concentrations of Ca, Cr, Fe, Ni and Cu were in good agreement with the certified values of the secondary standards.

Keywords

Inductively Couple Plasma Mass Spectrometry Inductively Couple Plasma Atomic Emission Spectrometry Chemical Separation Synthetic Sample Metallic Impurity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. K. Sinha, A. Kakodkar, Nucl. Eng. Des., 236 (2006) 683.CrossRefGoogle Scholar
  2. 2.
    T. R. G. Kutty, P. V. Hegde, K. B. Khan, T. Jarvis, A. K. Sengupta, S. Majumdar, H. S. Kamat, J. Nucl. Mater., 335 (2004) 462.CrossRefGoogle Scholar
  3. 3.
    M. Ordogh, G. Csath, E. Szabo, J. Radioanal. Nucl. Chem., 7 (1970) 249.Google Scholar
  4. 4.
    S. R. Kayasth, H. B. Desai, M. Sankar Das, Anal. Chim. Acta, 187 (1986) 271.CrossRefGoogle Scholar
  5. 5.
    Naina Raje, S. Kayasth, T. P. S. Asari, S. Gangadharan, Anal. Chim. Acta, 290 (1994) 371.CrossRefGoogle Scholar
  6. 6.
    M. Gopalkrishnan, K. Radhakrishnan, P. S. Dhami, V. T. Kulkarni, M. V. Joshi, A. B. Patwardhan, A. Ramanujam, J. N. Mathur, Talanta, 44 (1997) 169.CrossRefGoogle Scholar
  7. 7.
    M. J. Kulkarni, A. A. Argekar, J. N. Mathur, A. G. Page, Anal. Chim. Acta, 370 (1998) 153.CrossRefGoogle Scholar
  8. 8.
    J. R. Nelms, R. S. Vogel, Appl. Spectrosc., 21 (1967) 242.CrossRefGoogle Scholar
  9. 9.
    N. K. Porwal, A. A. Argekar, P. J. Purohit, A. G. Page, M. D. Sastry, Fr. J. Anal. Chem., 338 (1990) 255.CrossRefGoogle Scholar
  10. 10.
    P. J. Purohit, N. Goyal, S. K. Thulasidas, A. G. Page, M. D. Sastry, Spectrochim. Acta, B55 (2000) 1257.Google Scholar
  11. 11.
    V. L. Ribeiro Salvador, K. Imakuma, Anal. Chim. Acta, 188 (1986) 67.CrossRefGoogle Scholar
  12. 12.
    Assad S. Al-Ammar, F. H. Ali, X-Ray Spectrom., 21 (1992) 211.CrossRefGoogle Scholar
  13. 13.
    N. L. Misra, Sangita Dhara, V. C. Adya, S. V. Godbole, K. D. Singh Mudher, S. K. Aggarwal, Spectrochim. Acta, B63 (2008) 81.Google Scholar
  14. 14.
    M. Mukhamedshina, A. A. Mirsagatova, Appl. Radiation Isotopes, 63 (2005) 715.CrossRefGoogle Scholar
  15. 15.
    S. Wongnawa, P. Boonsin, T. Sombatchaikul, Hydrometallurgy, 45 (1997) 161.CrossRefGoogle Scholar
  16. 16.
    V. Natarajan, M. J. Kulkarni, B. A. Dhawale, N. S. Hon, N. K. Porwal, S. V. Godbole, V. K. Manchanda, Nucl. Instr. Meth., B266 (2008) 3290.Google Scholar
  17. 17.
    V. Natarajan, B. A. Dhawale, B. Rajeswari, N. S. Hon, S. K. Thulasidas, N. K. Porwal, S. V. Godbole, V. K. Manchanda, Spectrochim. Acta, B63 (2008) 817.Google Scholar
  18. 18.
    S. V. Godbole, private communication, June 2006.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • V. Natarajan
    • 1
  • B. Rajeswari
    • 1
  • B. A. Dhawale
    • 1
  • N. S. Hon
    • 1
  • S. V. Godbole
    • 1
  • V. K. Manchanda
    • 1
  1. 1.Radiochemistry DivisionBhabha Atomic Research CentreTrombay, MumbaiIndia

Personalised recommendations