Advertisement

Radon and progeny alpha-particle energy analysis using nuclear track methodology

  • G. Espinosa
  • J. I. Golzarri
  • J. S. Bogard
Environmental Radioactivity

Abstract

A preliminary procedure for alpha-energy analysis of radon and its progeny using nuclear track methodology (NTM) is described in this paper. The method is based on the relationship between alpha-particle energies deposited in polycarbonate material (CR-39) and the track size developed after a well-established chemical etching process. Track geometry, defined by parameters such as major or minor diameters, track area and overall track length, is shown to correlate with alpha-particle energy over the range 6.00 MeV (218Po) to 7.69 MeV (214Po). Track features are measured and the data analyzed automatically using a digital imaging system and commercial PC software. Examination of particle track diameters in CR-39 exposed to environmental radon reveals a multi-modal distribution. Locations of the maxima in this distribution are highly correlated with alpha-particle energies of radon daughters, and the distributions are sufficiently resolved to identify the radioisotopes. This method can be useful for estimating the radiation dose from indoor exposure to radon and its progeny.

Keywords

Radon Thoron Etching Time Nuclear Track Detector Track Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. F. Wong, L. Tommasino, Nucl. Tracks, 6 (1982) 17.Google Scholar
  2. 2.
    G. Espinosa, L. Tommasino, R. Griffith, I. Gamboa, I. Jacobson, J. I. Golzarri, Nucl. Tracks Radiat. Meas., 8 (1984) 433.CrossRefGoogle Scholar
  3. 3.
    G. W. Phillips, J. Span, J. S. Bogard, T. Vo Dinh, D. Emfietzoglou, R. Devine, M. Moscovitch, Proc. of the 14th Intern. Conf. on Solid State Dosimetry, New Haven CT, June 27–July 2, 2004, Radiat. Prot. Dosim., 119 (2006) 491.Google Scholar
  4. 4.
    A. M. Abdel Moneim, A. Addel Naby, F. A. El Ekkad, Nucl. Tracks Radiat. Meas., 21 (1993) 235.CrossRefGoogle Scholar
  5. 5.
    G. Espinosa, R. B. Gammage, K. E. Meyer, C. S. Dudney, Radiat. Prot. Dosim., 66 (1996) 363.Google Scholar
  6. 6.
    A. P. Fews, D. L. Henshaw, Nucl. Instr. Meth., 197 (1982) 517.CrossRefGoogle Scholar
  7. 7.
    M. Izerrouken, J. Skvarc, R. Illic, Nucl. Tracks Radiat. Meas., 31 (1999) 141.Google Scholar
  8. 8.
    G. Somogyi, I. Hunyadi, A. F. Hafez, G. Espinosa, Nucl. Tracks Radiat. Meas., 8 (1984) 163.CrossRefGoogle Scholar
  9. 9.
    G. Espinosa, Trazas Nucleares en Sólidos, IFUNAM-PUMA-UNAM, Mexico, 1984.Google Scholar
  10. 10.
    G. Espinosa, R. B. Gammage, Appl. Radiation Isotopes, 44 (1993) 719.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Instituto de FísicaUNAMMéxico, D.F.Mexico
  2. 2.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations