Skip to main content
Log in

Radon and progeny alpha-particle energy analysis using nuclear track methodology

  • Environmental Radioactivity
  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A preliminary procedure for alpha-energy analysis of radon and its progeny using nuclear track methodology (NTM) is described in this paper. The method is based on the relationship between alpha-particle energies deposited in polycarbonate material (CR-39) and the track size developed after a well-established chemical etching process. Track geometry, defined by parameters such as major or minor diameters, track area and overall track length, is shown to correlate with alpha-particle energy over the range 6.00 MeV (218Po) to 7.69 MeV (214Po). Track features are measured and the data analyzed automatically using a digital imaging system and commercial PC software. Examination of particle track diameters in CR-39 exposed to environmental radon reveals a multi-modal distribution. Locations of the maxima in this distribution are highly correlated with alpha-particle energies of radon daughters, and the distributions are sufficiently resolved to identify the radioisotopes. This method can be useful for estimating the radiation dose from indoor exposure to radon and its progeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. F. Wong, L. Tommasino, Nucl. Tracks, 6 (1982) 17.

    CAS  Google Scholar 

  2. G. Espinosa, L. Tommasino, R. Griffith, I. Gamboa, I. Jacobson, J. I. Golzarri, Nucl. Tracks Radiat. Meas., 8 (1984) 433.

    Article  CAS  Google Scholar 

  3. G. W. Phillips, J. Span, J. S. Bogard, T. Vo Dinh, D. Emfietzoglou, R. Devine, M. Moscovitch, Proc. of the 14th Intern. Conf. on Solid State Dosimetry, New Haven CT, June 27–July 2, 2004, Radiat. Prot. Dosim., 119 (2006) 491.

    Google Scholar 

  4. A. M. Abdel Moneim, A. Addel Naby, F. A. El Ekkad, Nucl. Tracks Radiat. Meas., 21 (1993) 235.

    Article  CAS  Google Scholar 

  5. G. Espinosa, R. B. Gammage, K. E. Meyer, C. S. Dudney, Radiat. Prot. Dosim., 66 (1996) 363.

    CAS  Google Scholar 

  6. A. P. Fews, D. L. Henshaw, Nucl. Instr. Meth., 197 (1982) 517.

    Article  CAS  Google Scholar 

  7. M. Izerrouken, J. Skvarc, R. Illic, Nucl. Tracks Radiat. Meas., 31 (1999) 141.

    CAS  Google Scholar 

  8. G. Somogyi, I. Hunyadi, A. F. Hafez, G. Espinosa, Nucl. Tracks Radiat. Meas., 8 (1984) 163.

    Article  CAS  Google Scholar 

  9. G. Espinosa, Trazas Nucleares en Sólidos, IFUNAM-PUMA-UNAM, Mexico, 1984.

    Google Scholar 

  10. G. Espinosa, R. B. Gammage, Appl. Radiation Isotopes, 44 (1993) 719.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Espinosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espinosa, G., Golzarri, J.I. & Bogard, J.S. Radon and progeny alpha-particle energy analysis using nuclear track methodology. J Radioanal Nucl Chem 277, 131–135 (2008). https://doi.org/10.1007/s10967-008-0720-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-008-0720-9

Keywords

Navigation