Advertisement

A combined method for the determination of the isotopic vector of plutonium isotopes in environmental samples

  • E. Hrnecek
  • R. Jakopič
  • A. Wallner
  • P. Steier
Article

Abstract

A combination of alpha-spectrometry, liquid scintillation counting (LSC) and accelerator mass spectrometry (AMS) was used for the determination of plutonium isotopes. 238Pu and 239+240Pu were measured by alpha-spectrometry after separation of Pu by anion-exchange using 236Pu tracer as recovery monitor. After alpha-measurement, one part of the sample was dissolved for determining 241Pu by LSC. Another part was used for the measurement of the 240Pu/239Pu atom ratio by AMS at VERA. Thus, it was possible to obtain complete information on the Pu isotopic composition of the samples. This method was applied to environmental reference samples and samples contaminated from nuclear reprocessing.

Keywords

Plutonium Accelerator Mass Spectrometry Accelerator Mass Spectrometry Plutonium Isotope 236Pu Tracer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. J. Kershaw, D. S. Woodhead, M. B. Lovett, K. S. Leonard, Appl. Radiation Isotopes, 46 (1995) 1121.CrossRefGoogle Scholar
  2. 2.
    D. Oughton, P. Day, K. Fifield, Plutonium measurement using accelerator mass spectrometry: Methodology and applications, in: Plutonium in the Environment, Edited Proc. 2nd Invited International Symposium, A. Kudo (Ed.), Elsevier, Amsterdam, 2001, p. 47.Google Scholar
  3. 3.
    P. W. Krey, E. P. Hardy, C. Pachucki, F. Rourke, J. Coluzza, W. K. Benson, Mass Isotopic Composition of Global Fall-Out Plutonium in Soil, Transuranium Nuclides in the Environment, IAEA-SM-199/39, IAEA, Vienna, 1976, p. 671.Google Scholar
  4. 4.
    T. Warneke, I. W. Croudace, P. E. Warwick, R. N. Taylor, Earth Planet. Sci. Lett., 203 (2002) 1047.CrossRefGoogle Scholar
  5. 5.
    H. Yamana, T. Yamamoto, H. Moriyama, Isotopic ratio of Pu released from fuel cycle facilities — importance of radiochemically pure 236Pu as a tracer, in: Plutonium in the Environment — Edited Proc. 2nd Invited International Symposium, A. Kudo (Ed.), Elsevier, Amsterdam, 2001, p. 31.Google Scholar
  6. 6.
    M. Yamamoto, A. Tsumura, Y. Katayama, T. Tsukatani, Radiochim. Acta, 72 (1996) 209.Google Scholar
  7. 7.
    K. Irlweck, E. Hrnecek, J. Radioanal. Nucl. Chem., 242 (1999) 595.CrossRefGoogle Scholar
  8. 8.
    E. Hrnecek, P. Steier, A. Wallner, Appl. Radiation Isotopes, 63 (2005) 633.CrossRefGoogle Scholar
  9. 9.
    D. L. Donohue, J. Alloys Comp., 271–273 (1998) 11.CrossRefGoogle Scholar
  10. 10.
    C. Wallner, T. Faestermann, U. Gerstmann, W. Hillebrandt, K. KNIE, G. KORSCHINEK, C. LIERSE, C. POMAR, G. RUGEL, Nucl. Instr. Meth. Phys. Res., B172 (2000) 333.CrossRefGoogle Scholar
  11. 11.
    S. Winkler, I. Ahmad, R. Golser, W. Kutschera, K. A. Orlandini, M. Paul, A. Priller, P. Steier, C. Vockenhuber, New Astron. Rev., 48 (2004) 151.CrossRefGoogle Scholar
  12. 12.
    K. Mayer, G. Rasmussen, M. Hild, E. Zleger, H. Ottmar, S. Abousahl, E. Hrnecek, Application of Isotopic Fingerprinting in Nuclear Forensic Investigations: A Case Study, Advances in Destructive and Non-Destructive Analysis for Environmental Monitoring and Nuclear Forensics, STI/PUB/1169, IAEA, Vienna, 2003, p. 63.Google Scholar
  13. 13.
    D. Solatie, P. Carbol, E. Hrnecek, T. Jaakkola, M. Betti, Radiochim. Acta, 90 (2002) 447.CrossRefGoogle Scholar
  14. 14.
    T. P. Ryan, P. I. Mitchell, J. Vives I Batlle, J. A. Sanchez-Cabeza, A. T. McGarry, W. R. Schell, Low-level 241Pu Analysis by Supported-Disk Liquid Scintillation Counting, J. E. Noakes, F. Schönhofer, H. A. Pollach (Eds), Liquid Scintillation Spectrometry 1992, Radiocarbon, Tucson, 1993, p. 75.Google Scholar
  15. 15.
    J. Moreno, J. J. LaRosa, P. R. Danesi, K. Burns, P. DeRegge, N. Vajda, M. Sinojmeri, Radioact. Radiochem., 9 (1998) 35.Google Scholar
  16. 16.
    E. Hrnecek, L. Aldave De Las Heras, M. Betti, Radiochim. Acta, 90 (2002) 721.CrossRefGoogle Scholar
  17. 17.
    P. P. Povinec, J. Radioanal. Nucl. Chem., 263 (2005) 413.Google Scholar
  18. 18.
    I. Adsley, D. Andrew, D. Arnold, R. Bojanowski, Y. Bourlat, A. R. Byrne, M-T. Crespo, J. Desmond, P. De Felice, A. Fazio, J. L. Gascón, R. S. Grieve, A. S. Holmes, S. M. Jerome, M. Korun, M. Magoni, K. J. Odell, D. S. Popplewell, I. Poupaki, G. Sutton, J. Toole, M. W. Wakerley, H. Wershofen, M. J. Woods, M. J. Youngman, Appl. Radiation Isotopes, 49 (1998) 1295.CrossRefGoogle Scholar
  19. 19.
    C. Vockenhuber, I. Ahmad, R. Golser, W. Kutschera, V. Liechtenstein, A. Priller, P. Steier, S. Winkler, Intern. J. Mass Spectrom., 223–224 (2003) 713.CrossRefGoogle Scholar
  20. 20.
    S. H. Lee, J. Gastaud, J. J. La Rosa, L. Liong Wee Kong, P. P. Povinec, E. Wyse, L. K. Fifield, P. A. Hausladen, L. M. Di Tada, G. M. Santos, J. Radioanal. Nucl. Chem., 248 (2001) 757.CrossRefGoogle Scholar
  21. 21.
    Y. Muramatsu, S. Uchida, K. Tagami, S. Yoshida, T. Fujikawa, J. Anal. At. Spectrom., 14 (1999) 859.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • E. Hrnecek
    • 1
  • R. Jakopič
    • 2
  • A. Wallner
    • 3
  • P. Steier
    • 3
  1. 1.ARC Seibersdorf Research GmbHSeibersdorfAustria
  2. 2.Department of Environmental SciencesJožef Stefan InstituteLjubljanaSlovenia
  3. 3.VERA LaboratoryInstitute für Isotopenforschung und Kernphysik der Universität WienViennaAustria

Personalised recommendations