Advertisement

Modeling of gamma-ray spectra to direct efficient chemical separations

  • M. Douglas
  • J. I. Friese
  • G. A. Warren
  • P. P. Bachelor
  • O. T. FarmerIII
  • A. D. Choiniere
  • S. M. Schulte
  • C. E. Aalseth
Article

Abstract

A project has been undertaken at Pacific Northwest National Laboratory (PNNL) to tailor a series of efficient chemical separations to allow the rapid quantification of gamma-ray emitting isotopes in mixed fission product (MFP) samples. In support of that goal, modeling of singles and coincident gamma-ray spectra that would result from various chemical separation strategies has been performed. These simulated spectra have identified likely instances of spectral interference and have provided an estimate of the time window available for the detection of radionuclides following various chemical separation schemes. A description of results to date is presented here, demonstrating the utility of this approach for improved processing and analysis of fission product samples.

Keywords

Chemical Separation Light Lanthanide Pacific Northwest National Laboratory Light Lanthanide Element Fission Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. W. Perkins, U. P. Jenquin, Fission and Activation Products in Nuclear Reactor Fuels and Nuclear Explosion Debris, Pacific Northwest National Laboratory Report 11554, 1997.Google Scholar
  2. 2.
    Eichrom Technologies, Inc., 8205 S. Cass Ave., Suite 106, Darien, IL 60561.Google Scholar
  3. 3.
    W. K. Hensley, A. D. McKinnon, H. S. Miley, M. E. Panisko, R. M. Savard, SYNTH (Ver. 5.2): A Computer Code to Generate Synthetic Gamma-Ray Spectra, Pacific Northwest National Laboratory, 2005.Google Scholar
  4. 4.
    Genie 2000 (Ver. 2.1): Gamma Acquisition and Analysis, Canberra Industries, 2002.Google Scholar
  5. 5.
    L. E. Smith, C. E. Aalseth, T. W. Hossbach, H. S. Miley, R. W. Perkins, J. E. Ellis, Nucl. Instr. Meth. Phys. Res., A505 (2003) 320.Google Scholar
  6. 6.
    L. E. Smith, J. E. Ellis, A. E. Valsan, C. E. Aalseth, H. S. Miley, IEEE Nucl. Sci. Symp. Rep., 2 (2003) 742.Google Scholar
  7. 7.
    G. A. Warren, L. E. Smith, C. E. Aalseth, J. E. Ellis, A. B. Valsan, W. Mengesha, IEEE Nucl. Sci. Symp. Rep., 1 (2005) 345.CrossRefGoogle Scholar
  8. 8.
    D. E. Dry, E. Bauer, L. A. Petersen, J. Radioanal. Nucl. Chem., 263 (2005) 19.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • M. Douglas
    • 1
  • J. I. Friese
    • 1
  • G. A. Warren
    • 1
  • P. P. Bachelor
    • 1
  • O. T. FarmerIII
    • 1
  • A. D. Choiniere
    • 1
  • S. M. Schulte
    • 1
  • C. E. Aalseth
    • 1
  1. 1.National Security DirectoratePacific Northwest National LaboratoryRichlandUSA

Personalised recommendations