Advertisement

Evaluation of measurements of 238Pu, 239Pu and 240Pu in urine at the microbecquerel level using thermal ionization mass spectrometry and alpha-spectrometry at Los Alamos National Laboratory: Results of a two year comparison test (LA-UR-06-8055)

  • N. E. Bores
  • M. K. Schultz
  • J. M. Rankin
  • A. J. Denton
  • G. F. Payne
  • R. E. Steiner
  • S. P. LaMont
  • S. B. Ortiz
Mass Spectrometric Methods for the Determination of Ultra Trace Actinides

Abstract

The Intercomparison Studies Program (ISP) at the Oak Ridge National Laboratory (ORNL, Oak Ridge, TN, USA) provides natural-matrix urine quality-assurance/quality-control (QA/QC) samples to radiobioassay analysis laboratories. In 2003, a single laboratory (Los Alamos National Laboratory LANL, Los Alamos NM USA) requested a change in the test-samples provided previously by the ISP. The change was requested to evaluate measurement performance for analyses conducted using thermal-ionization mass spectrometry (TIMS). Radionuclides included 239Pu at two activity levels (75–150 μBq·sample−1 and 1200–1600 μBq·sample−1) and 238Pu (3700–7400 μBq·sample−1). In addition, 240Pu was added to the samples so that the 239+240Pu specific activity was 3700–7400 μBq·sample−1. In this paper, the results of testing during the period May, 2003 through September, 2005 are presented and discussed.

Keywords

Normal Probability Plot Alpha Spectrometry Donor Pool Report Measurement Result Polyethylene Terephthalate Bottle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Wu, K. G. W. Inn, Z. Lin, C. A. McMahon, L. R. Karam, Appl. Radiation Isotopes, 56 (2002) 379.CrossRefGoogle Scholar
  2. 2.
    P. Berard, D. Calvadore, J. C. Harduin, J. Radioanal. Nucl. Chem., 197 (1995) 357.CrossRefGoogle Scholar
  3. 3.
    A. R. Dalheimer, D. Beyer, E. W. Günther, K. Henrichs, Nucl. Instr. Meth. Phys. Res., A369 (1996) 713.Google Scholar
  4. 4.
    S. C. Lee, J. M. R. Hutchinson, K. G. W. Inn, M. Thein, Health Phys., 68 (1995) 350.CrossRefGoogle Scholar
  5. 5.
    M. McCartney, V. Olive, E. M. Scott, J. Radioanal. Nucl. Chem., 242 (1999) 413.CrossRefGoogle Scholar
  6. 6.
    D. Lewis, G. Miller, C. J. Duffy, D. W. Efurd, W. C. Inkret, S. E. Wagner, J. Radioanal. Nucl. Chem., 249 (2001) 115.CrossRefGoogle Scholar
  7. 7.
    B. N. Taylor, C. E. Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, NIST Technical Note 1297, 1994.Google Scholar
  8. 8.
    International Standards Organization, Guide to the Expression of Uncertainty in Measurement, ISO, Geneva, Switzerland, ISBN 92-67-101188-9, 1995.Google Scholar
  9. 9.
    C. J. Brookes, I. G. Betteley, S. M. Loxton, Fundamentals of Mathematics and Statistics, Wiley, New York, 1979, p. 369.Google Scholar
  10. 10.
    J. N. Miller, Analyst, 118 (1993) 455.CrossRefGoogle Scholar
  11. 11.
    NIST/SEMATECH, e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm, 2006.
  12. 12.
    J. J. Filliben, Technometrics, 17 (1975) 111.CrossRefGoogle Scholar
  13. 13.
    NIST/SEMATECH, e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/eda/section3/eda3676.htm, 2006.

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • N. E. Bores
    • 1
  • M. K. Schultz
    • 2
  • J. M. Rankin
    • 1
  • A. J. Denton
    • 1
  • G. F. Payne
    • 1
  • R. E. Steiner
    • 3
  • S. P. LaMont
    • 3
  • S. B. Ortiz
    • 3
  1. 1.Oak Ridge National Laboratory, Quality Systems and Services DivisionIntercomparison Studies ProgramOak RidgeUSA
  2. 2.University of Iowa Hospitals and ClinicsIowa CityUSA
  3. 3.Los Alamos National LaboratoryNuclear and Radiochemistry GroupLos AlamosUSA

Personalised recommendations