Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 278, Issue 1, pp 137–149 | Cite as

Estimation of isotopic composition of plutonium from thermal reactors by neutron coincidence counting through isotopic correlation technique

  • Pradeep Kumar
  • Dipti Shah
  • K. L. Ramakumar
Article

Abstract

Correlations have been established between %Eff 240Pu and various plutonium isotopes formed in thermal reactors. Based on these correlations, a method has been developed for the estimation of isotopic composition of plutonium obtained from thermal reactors. The method is simple, fast, non-destructive and finds application for the verification of plutonium isotopic composition in the finished products of known plutonium content. The method could be applied in the nuclear fuel fabrication to verify and confirm the fissile content (239Pu+241Pu) specification. It has also been shown that in principle, similar correlations could be established for Pu obtained from different thermal reactor fuels with reactor specific fitting parameters.

Keywords

Isotopic Composition Plutonium International Atomic Energy Agency Thermal Reactor Thermal Ionization Mass Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Schneider, D. E. Christensen, D. P. Granquist, BNWL-SA-3304, 1972.Google Scholar
  2. 2.
    A. Hermann, H. C. Mehner, Proc. Symp. on Nuclear Safeguards Technology, IAEA-SM-231/20, 1978.Google Scholar
  3. 3.
    R. Berg, Verification of Reprocessing Plant Input and Output Analysis, Proc. Symp. on Nuclear Safeguards Technology, IAEA-SM-231/16, 1978.Google Scholar
  4. 4.
    K. L. Ramakumar, H. C. Jain, Proc. Symp. on Nuclear Chemistry and Radiochemistry, Andhra University, Waltair, 1980, p. 444.Google Scholar
  5. 5.
    M. Benedict, T. H. Pigford, H. W. Levi, Nuclear Chemical Engineering, 2nd ed., McGraw-Hill Book Co., NewYork, 1981.Google Scholar
  6. 6.
    S. K. Aggarwal, D. Alamelu, P. M. Shah, Radiochim. Acta, 129 (1998) 81.Google Scholar
  7. 7.
    P. B. Gurba, Rajendrakumar, S. V. Udagatti, R. K. Singh, K. Dey, D. D. Bajpai, Proc. Symp. on Nuclear and Radiochemistry, University of Pune, 2001, p. 442.Google Scholar
  8. 8.
    R. Gunnink, Nucl. Mater. Managem., 9(2) (1980) 83.Google Scholar
  9. 9.
    J. C. Lee, Sin Tao Hsue, Nucl. Technol., 76 (1987) 203.Google Scholar
  10. 10.
    K. Lassmann, C. T. Walker, J. van de Laar, J. Nucl. Mater., 255 (1998) 222.CrossRefGoogle Scholar
  11. 11.
    K. Lassmann, J. Nucl. Mater., 188 (1992) 295.CrossRefGoogle Scholar
  12. 12.
    K. Lassmann, C. O. Carroll, J. van de Laar, C. T. Warker, J. Nucl. Mater., 208 (1994) 223.CrossRefGoogle Scholar
  13. 13.
    A. Ariemma, L. Bramati, M. Galliani, M. Paoletti Gualandi, B. Zaffiro, A. Cricchio, L. Koch, EUR-4638, 1971.Google Scholar
  14. 14.
    S. E. Lemehov, M. Suzuki, JAERI-Data/Code 2001-025, Aug 2001.Google Scholar
  15. 15.
    P. DE Regge, R. Boden, Proc. of IAEA Symp. on Nuclear Safeguards Technology, Vienna, Vol. II, 1978, p. 747 Google Scholar
  16. 16.
    D. Reilly, N. Ensslin, H. Smith, Report No. NUREG/CR — 5550 LA-UR-90-732, 1991.Google Scholar
  17. 17.
    J. Jacquesson, J. Phys., 24 (1963) 112.Google Scholar
  18. 18.
    M. Stephens, J. Swansen, L. East, LA-6121-MS, 1975.Google Scholar
  19. 19.
    J. Swansen, N. Ensslin, M. Krick, H. Menlove, LA-6788, 1977.Google Scholar
  20. 20.
    C. V. Strain, NRL Memorandum Report, 2127, May 1970.Google Scholar
  21. 21.
    K. Böhnel, KFK 2203, 1975 and AWRE Translation No. 70 (54/4252), 1978.Google Scholar
  22. 22.
    M. S. Krick, M. L. Evans, N. Ensslin, C. Hatcher, H. O. Menlove, J. L. Sapir, J. E. Swansen, Proc. of IAEA Symp. on Nuclear Safeguards Technology, IAEA-SM-231/50, 1978.Google Scholar
  23. 23.
    Proc. of the IAEA Symp. on Nuclear Safeguards Technology, Vol. I, Vienna, 1982.Google Scholar
  24. 24.
    Proc. of the IAEA Symp. on Nuclear Safeguards Technology, Vol. II, Vienna, 1982.Google Scholar
  25. 25.
    Proc. of the IAEA Symp. on Nuclear Safeguards Technology, Vol. I, Vienna, 1978.Google Scholar
  26. 26.
    Proc. of the IAEA Symp. on Nuclear Safeguards Technology, Vol. II, Vienna, 1978.Google Scholar
  27. 27.
    L. Bondar, Proc. Symp. on Nuclear Safeguards Technology, Vienna, 1982, IAEA-SM-260/54.Google Scholar
  28. 28.
    R. Dierckx, W. Hage, Nucl. Sci. Eng., 85 (1983) 325.Google Scholar
  29. 29.
    W. Hage, D. M. Cifarelli, Nucl. Sci. Eng., 89 (1985) 159.Google Scholar
  30. 30.
    R. Sher, Report No. BNL — 50332, 1972.Google Scholar
  31. 31.
    R. N. Ceo, K. A. Thompson, J. Radioanal. Nucl. Chem., 243 (2000) 39.CrossRefGoogle Scholar
  32. 32.
    J. E. Swansen, P. R. Collinsworth, M. S. Krick, Nucl. Instr. Meth., 176 (1980) 555.CrossRefGoogle Scholar
  33. 33.
    H. Graber, A. Keddar, G. Hofmann, S. Nagel, Proc. IAEA Symp. on Nuclear Safeguard Technology, IAEA-SM-231/129, 1978.Google Scholar
  34. 34.
    G. L. Hanna, Proc. IAEA Symp. on Nuclear Safeguards Technology, IAEA-SM-293/132, 1978.Google Scholar
  35. 35.
    A. Fattahm, B. Hassan, P. Karasuddhi, K. Pakaza, A. Ramalho, Proc. IAEA Symp. on Nuclear Safeguards Technology, 1986, IAEA-SM-293/92.Google Scholar
  36. 36.
    N. Pacilo, AEC Critical Rev. Ser. TID-24512, 1969.Google Scholar
  37. 37.
    D. E. Christensen, Report No. BNWL-SA-4274, 1972.Google Scholar
  38. 38.
    J. L. Drummond, R. A. Grant, Talanta, 13 (1966) 477.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Radioanalytical Chemistry Division, Radiochemistry and Isotope GroupBhabha Atomic Research CentreTrombay, MumbaiIndia

Personalised recommendations