Kinetics and products derived from C60 fullerene radiolysis in toluene

  • F. Cataldo
  • E. Lilla
  • O. Ursini
  • G. Angelini


C60 fullerene was radiolyzed in toluene solution both in presence of air and in vacuum at four different radiation doses 12, 24, 36, 48 and 96 kGy. Clear evidences of the addition of benzyl radicals to the fullerene cage derive from FT-IR and C13-NMR spectra of the reaction product. In presence of air the interference of oxygen is evident in the FT-IR spectra and from the elemental analysis. A detailed analysis of the kinetics of the multiple addition of benzyl radicals to the fullerene cage was made spectrophotometrically with the determination of the addition rate constants at the each addition step and the average number of benzyl groups added to the fullerene cage as function of the radiation dose.


Toluene Fullerene Toluene Solution Product Derive Fullerene Cage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. J. Krusic, E. Wasserman, P. N. Keizer, J. R. Morton, K. F. Preston, Science, 254 (1991) 1183.CrossRefGoogle Scholar
  2. 2.
    J. R. Morton, F. Negri, K. F. Preston, Acc. Chem. Res., 31 (1998) 63.CrossRefGoogle Scholar
  3. 3.
    B. Tumanskii, O. Kalina, Radical Reactions of Fullerenes and Their Derivatives. Vol. 2 of the book series “Developments in Fullerene Science” T. Braun (Ed.). Kluwer Academic Publishers, Dordrecht, NL, 2001, p. 45.Google Scholar
  4. 4.
    R. Taylor, Lecture Notes on Fullerene Chemistry, A Handbook for Chemists. Imperial College Press, London, 1999, Chapter 7.Google Scholar
  5. 5.
    D. M. Guldi, M. Prato, Acc. Chem. Res., 33 (2000) 695.CrossRefGoogle Scholar
  6. 6.
    D. M. Guldi, P. V. Kamat, Chapter 5 in: Fullerenes: Chemistry, Physics and Technology K. M. Kadish and R. S. Ruoff (Eds), J. Wiley & Sons, New York, 2000.Google Scholar
  7. 7.
    F. Cataldo, Fullerene Sci. Technol., 4 (1996) 1041.Google Scholar
  8. 8.
    F. Cataldo, M. Gobbino, P. Ragni, Fullerenes Nanot. Carbon Nanostruct., 15 (2007) 379.CrossRefGoogle Scholar
  9. 9.
    F. Cataldo, G. Angelini, O. Ursini, Fullerenes Nanot. Carbon Nanostruct., 15 (2007) 445CrossRefGoogle Scholar
  10. 10.
    V. K. Milinchuk, V. I. Tupikov, Organic Radiation Chemistry Handbook, Ellis Horwood Ltd., Chichester, UK, 1989.Google Scholar
  11. 11.
    J. Hoigne’, in: Aspects of Hydrocarbons Radiolysis, T. G. Gaumann and J. Hoigne’ (Eds), Academic Press, London, 1968, Chapter 3.Google Scholar
  12. 12.
    D. Lin-Vien, N. B. Colthup, W. G. Fateley, J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, S. Diego, CA, USA, 1991, Chapter 17.Google Scholar
  13. 13.
    F. Cataldo, Polym. Degrad. Stabil., 81 (2003) 249.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Lupi Chemical ResearchRomeItaly
  2. 2.Institute of Chemical Methodologies CNRMonterotondo Stazione (Rome)Italy

Personalised recommendations