Journal of Radioanalytical and Nuclear Chemistry

, Volume 279, Issue 2, pp 601–610 | Cite as

Sorption of uranium(VI) onto strontium titanate in KNO3 medium

  • H. B. Ortiz-Oliveros
  • E. Ordoñez-Regil
  • S. M. Fernández-Valverde


The sorption of uranium(VI) on the perovskite structure of strontium titanate in a 0.5M KNO3 solution is studied. SrTiO3 commercial material was characterized by XRD showing a tausonite face, with a specific area of 2.42 m2.g−1. The electrical surface characterization of the compound was performed by mass and potentiometric titrations. pHpzc in water was 8.5±0.3 and 9.1±0.2 in 0.5M KNO3 solution, showing a positively charged surface. FITEQL 4.0 program was used to calculate the sorption curves and the surface acidity constants by the constant capacitance model obtaining: log K 1 = 8.67 and log K 2 = −9.43. The sorption edge was fitted with two different uranium(VI) species sorbed, corresponding to bidentate complexes of UO 2 2+ and UO2(OH)2H2O on the surface of strontium titanate.


Uranium Strontium Titanate Potassium Nitrate Solution Acidity Constant Hydration Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Sposito, The Surface Chemistry of Soils, Oxford University Press, New York, 1984.Google Scholar
  2. 2.
    W. Stumm, Chemistry of the Solid-Water Interface, Wiley, New York, 1992.Google Scholar
  3. 3.
    D. A. Dzombak, F. M. M. Morel, Surface Complexation Modeling: Hydrous Ferric Oxide, Wiley, New York, 1990.Google Scholar
  4. 4.
    OIEA, Scientific and Technical Basis for Geological Disposal of Radioactive Wastes, Technical Reports Series No. 413, Vienna, 2003.Google Scholar
  5. 5.
    E. Ordoñez-Regil, R. Drot, E. Simoni, J. J. Ehrhardt, Langmuir, 18 (2002) 7977.CrossRefGoogle Scholar
  6. 6.
    R. Guillaumont, Radiochim. Acta, 66–67 (1994) 231.Google Scholar
  7. 7.
    D. Peak, J. Colloid Interface Sci., 303 (2006) 337.CrossRefGoogle Scholar
  8. 8.
    J. Bruno, L. Duro, Review of Selected Sorption Data of Radionuclides in Granitic Rock, SKB Progress Report U-98-06, 1998.Google Scholar
  9. 9.
    I. G. McKinley, W. R. Alexander, J. Environ. Radioact., 15 (1992) 19.CrossRefGoogle Scholar
  10. 10.
    A. Muurinen, Diffusion of Anions and Cations in Compacted Sodium Bentonite, Technical Research Centre of Finland, VTT Publications 168, Finland, 1994.Google Scholar
  11. 11.
    J. Jeanjean, J. C. Rouchaud, L. Tran, M. Fedoroff, J. Radioanal. Nucl. Chem., 201 (1995) 529.CrossRefGoogle Scholar
  12. 12.
    J. Westall, H. A. Hohl, Adv. Colloid Interface Sci., 12 (1980) 265.CrossRefGoogle Scholar
  13. 13.
    J. A. Davis, D. B. Kent, Mineral Water Interface Geochemistry, in: Reviews in Mineralogy, 23, M. Hochella, A. White (Eds), Mineralogical Society of America, Washington, 1990, p. 117.Google Scholar
  14. 14.
    A. M. L. Krapiel, K. Keller, F. M. M. Morel, Environ. Sci. Technol., 32 (1998) 2829.CrossRefGoogle Scholar
  15. 15.
    K. F. Hayes, G. Redden, W. Ela, J. O. Leckie, J. Colloid Interface Sci., 142 (1991) 448.CrossRefGoogle Scholar
  16. 16.
    E. Ordoñez-Regil, R. Drot, E. Simoni, J. J. Ehrhardt, Langmuir, 18 (2002) 7977.CrossRefGoogle Scholar
  17. 17.
    E. Ordoñez-Regil, R. Drot, E. Simoni, J. Colloid Interface Sci., 263 (2003) 391.CrossRefGoogle Scholar
  18. 18.
    R. Drot, C. Lindecker, B. Fourest, E. Simoni, New J. Chem., (1998) 1105.Google Scholar
  19. 19.
    C. Lomenec, R. Drot, E. Simoni, Radiochim. Acta, 91 (2003) 453.CrossRefGoogle Scholar
  20. 20.
    V. I. Plotnikov, V. I. Bannykh, Radiochemistry, 39 (1997) 158.Google Scholar
  21. 21.
    S. Yinjie, J. Liqiang, Z. Aimin, J. Qixin, S. Dakang, J. Radioanal. Nucl. Chem., 222 (1997) 75.CrossRefGoogle Scholar
  22. 22.
    O. J. Heinonen, J. Lehto, J. K. Miettinen, Radiochim. Acta, 28 (1981) 93.Google Scholar
  23. 23.
    M. Mantel, J. Gallat, S. Amiel, J. Galiat, R. G. Dosch, N. E. Brown, H. P. Stephens, R. G. Anthony, Treatment of liquid nuclear wastes with advanced forms of titanate ion exchangers, Proc. Intern. Symp., Waste Management’ 93, 2, Tucson, Arizona, Board of Regents, Phoenix, AZ., 1993, p. 1751.Google Scholar
  24. 24.
    O. M. Barnett, P. M. Jardine, S. C. Brooks, Environ Sci. Technol., 36 (2002) 937.CrossRefGoogle Scholar
  25. 25.
  26. 26.
    J. C. Westall, A Program for the Determination of Chemical Equilibrium Constants from Experimental Data, Technical Report, Chemistry Department, Oregon State University, Corvallis, Oregon, 1982.Google Scholar
  27. 27.
    A. L. Herbelin, J. C. Westall, Report 96-01, Department of Chemistry, Oregon State University, Corvallis, 1996.Google Scholar
  28. 28.
    J. P. Jolivet, De la solution à l’oxyde, InterEdition/CNRS, Paris, 1994.Google Scholar
  29. 29.
    S. Brunauver, P. Emmett, E. Teller, J. American Chem. Soc., 60 (1938) 309.CrossRefGoogle Scholar
  30. 30.
    G.H. Bolt, W. H Van Riemsdijk, Ion Adsorption on Inorganic Variable Charge Constituents, in Soil Chemistry, B. G. H. Bolt (Ed.), Elsevier, Amsterdam, 1982.Google Scholar
  31. 31.
    T. Preocanin, N. Kallay, Croatica Chem. Acta, 71 (1998) 1117.Google Scholar
  32. 32.
    J. S. Noh, J. A. Schwartz, J. Colloid Interface Sci., 130 (1989) 157.CrossRefGoogle Scholar
  33. 33.
    N. M. Nagy, J. Kónya, J. Colloid Interface Sci., 305 (2007) 94.CrossRefGoogle Scholar
  34. 34.
    E. Simoni, Metal sorption on oxide, silicate and phosphate solids: Thermodynamical and structural point view, Encyclopedia of Surface and Colloid Science, Science, Marcel Dekker, 2002, p. 3283.Google Scholar
  35. 35.
    C. J. Tadanier, M. J. Eick, Soil Sci. Soc. Am. J., 66 (2002) 1505.Google Scholar
  36. 36.
    E. Browne, J. M. Paitriki, R. E. Duebler, A. A. Slihab-Eldin, L. J. Jardine, J. K. Tuli, A. B. Buyran, Table of Isotopes, C. M. Lederer, V. Shirley (Eds), 7th ed., Wiley and Sons, Inc., USA, 1979.Google Scholar
  37. 37.
    L. A. Sabas-Chávez, Thesis Grade of Bachelor in Chemistry, Chemistry Faculty UAEM, Mexico, 2008.Google Scholar
  38. 38.
    L. C. Bell, A. M. Posner, J. P. J. Quirk, J. Colloid Interface Sci., 42 (1973) 250.CrossRefGoogle Scholar
  39. 39.
    N. Marmier, Ph.D. Thèse, Université de Reims, 1994.Google Scholar
  40. 40.
    G. García-Rosales, R. Drot, G. Lagard, F. Mercier-Bion, E. Simoni, E. Ordoñez-Regil, J. Lambert, J. J. Ehrardt, Étude en fonction de la temperature des mécanismes d’interaction entre U(VI) et des surfaces de SrTiO3, Xes Journées Nationales de Radiochimie, Villeneuve-les-Avignon 7–8 sept. 2006.Google Scholar
  41. 41.
    R. Gillomont, T. Fanchanel, V. Neck, J. Fuger, D. A. Palmer, I. Grenthe, M. H. Rend, Update on the Chemical Thermodynamics of Uranium, Plutonium, Americium and Technetium, OCDE Nuclear Energy Agency, Data Bank, Issy-les-Moulineaux, France, 2003.Google Scholar
  42. 42.
    A. Kowal-Fouchard, Étude des mechanismes de retention des ions U(VI) et Eu(III) sur les argiles: Influence des silicates, Thèse, Université Paris XI Orsay, 2002.Google Scholar
  43. 43.
    J. Vandenborre, R. Drot, E. Simoni, Inorg. Chem., 46 (2007) 1291.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • H. B. Ortiz-Oliveros
    • 1
    • 2
  • E. Ordoñez-Regil
    • 1
  • S. M. Fernández-Valverde
    • 1
  1. 1.Depto. de QuímicaInstituto Nacional de Investigaciones NuclearesMéxico D.F., C.P.México
  2. 2.Facultad de CienciasUniversidad Autónoma del Estado de MéxicoPiedras BlancasMéxico

Personalised recommendations