Skip to main content
Log in

Trace element ink spiking for signature authentication

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Signature authentication is a critical question in forensic document examination. Last years the evolution of personal computers made signature copying a quite easy task, so the development of new ways for signature authentication is crucial. In the present work a commercial ink was spiked with many trace elements in various concentrations. Inorganic and organometallic ink soluble compounds were used as spiking agents, whilst ink retained its initial properties. The spiked inks were used for paper writing and the documents were analyzed by a non destructive method, the energy dispersive X-ray fluorescence. The thin target model was proved right for quantitative analysis and a very good linear relationship of the intensity (X-ray signal) against concentration was estimated for all used elements. Intensity ratios between different elements in the same ink gave very stable results, independent on the writing alterations. The impact of time both to written document and prepared inks was also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. D. Maind, S. A. Kumar, N. Chattopadhyay, Ch. Gandhi, M. Sudersanan, J. Forensic Sci., 159 (2006) 32.

    Article  CAS  Google Scholar 

  2. J. Zieba-Palus, M. Kunicki, J. Forensic Sci., 158 (2006) 164.

    Article  CAS  Google Scholar 

  3. S. Verma, K. N. Prasad, G. J. Misra, Forensic Sci. Intern., 13 (1979) 65.

    Article  Google Scholar 

  4. V. N. Aginsky, J. Forensic Sci., 38 (1993) 1131.

    CAS  Google Scholar 

  5. C. Roux, M. Novotny, I. Evans, C. Lennard, Forensic Sci. Intern., 101 (1999) 167.

    Article  Google Scholar 

  6. V. N. Aginsky, J. Chromatogr., A678 (1994) 125.

    Google Scholar 

  7. J. A. Tappolet, Forensic Sci. Intern., 22 (1983) 99.

    Article  CAS  Google Scholar 

  8. R. N. Totty, M. R. Ordidge, L. J. Onion, Forensic Sci. Intern., 28 (1985) 137.

    Article  Google Scholar 

  9. L. F. Colwell, B. L. Kargel, J. Assoc. Off. Anal. Chem., 60 (1977) 613.

    CAS  Google Scholar 

  10. A. Lofgren, J. Andrasko, J. Forensic Sci., 38 (1993) 1151.

    Google Scholar 

  11. I. S. Lurie, J. D. Wittwer, High Performance Liquid Chromatography in Forensic Chemistry, Chromatographic Science Series, Vol. 24, Marcel Dekker Inc., 1983, p. 399.

  12. S. Fanali, M. Schudel, J. Forensic Sci., 36 (1991) 1192.

    CAS  Google Scholar 

  13. E. Rohde, A. C. Mcmanus, C. Vogt, W. R. Heineman, J. Forensic Sci., 42 (1997) 1004.

    CAS  Google Scholar 

  14. A. Zlotnick, F. P. Smith, Forensic Sci. Intern., 92 (1998) 269.

    Article  CAS  Google Scholar 

  15. C. Vogt, J. Vogt, A. Becker, E. Rohde, J. Chromatogr., A781 (1997) 391.

    Article  Google Scholar 

  16. T. Hardcastle, M. A. Hall, J. Forensic Sci. Soc., 18 (1978) 53.

    Article  CAS  Google Scholar 

  17. C. Sensi, A. Cantu, J. Forensic Sci., 27 (1982) 196.

    CAS  Google Scholar 

  18. R. Brunelle, M. J. Pro, J. Assoc. Off. Anal. Chem., 55 (1972) 823.

    CAS  Google Scholar 

  19. R. A. Merril, E. G. Bartick, J. Forensic Sci., 37 (1992) 528.

    Google Scholar 

  20. J. Wang, G. Luo, S. Sun, Z. Wang, Y. Wang, J. Forensic Sci., 46 (2001) 1093.

    CAS  Google Scholar 

  21. B. B. Trzcinska, J. Mol. Struct., 294 (1993) 259.

    Article  CAS  Google Scholar 

  22. T. Sinor, P. Jeffery, K. Everse, E. Menzel, J. Forensic Sci., 31 (1986) 825.

    CAS  Google Scholar 

  23. A. Zeichner, B. Glattstein, J. Forensic Sci., 37 (1992) 738.

    CAS  Google Scholar 

  24. C. Vogt, A. Becker, J. Vogt, J. Forensic Sci., 44 (1999) 819.

    CAS  Google Scholar 

  25. J. L. Ferrero, C. Roldan, D. Juanes, J. Caarballo, J. Pereira, M. Ardid, J. L. Llunch, R. Vives, Nucl. Instr. Meth., B213 (2004) 729.

    Google Scholar 

  26. W. Malzer, O. Hahn, B. Kanngiesser, X-ray Spectrom., 33 (2004) 229.

    Article  CAS  Google Scholar 

  27. G. Vittiglio, S. Bichlmeier, P. Klinger, J. Heckel, W. Fuzhong, L. Vincze, K. Janssens, P. Engström, A. Rindby, K. Dietrich, D. Jembrih-Simbürger, M. Schreiner, D. Denis, A. Lakdar, A. Lamotte, Nucl. Instr. Meth., B213 (2004) 693.

    Google Scholar 

  28. J. S. Schweitzer, J. I. Trombka, S. Floyd, C. Selavka, G. Zeosky, N. Gahn, T. Mcclanahan, T. Burbine, Nucl. Instr. Meth., B241 (2005) 816.

    Google Scholar 

  29. D. N. Papadopoulou, G. A. Zachariadis, A. N. Anthemidis, N. C. Tsirliganis, J. A. Stratis, Talanta, 68 (2006) 1692.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Kallithrakas-Kontos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatzistavros, V.S., Kallithrakas-Kontos, N.G. Trace element ink spiking for signature authentication. J Radioanal Nucl Chem 277, 399–404 (2008). https://doi.org/10.1007/s10967-007-6989-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-007-6989-2

Keywords

Navigation