Journal of Radioanalytical and Nuclear Chemistry

, Volume 277, Issue 2, pp 399–404 | Cite as

Trace element ink spiking for signature authentication

  • V. S. Hatzistavros
  • N. G. Kallithrakas-Kontos


Signature authentication is a critical question in forensic document examination. Last years the evolution of personal computers made signature copying a quite easy task, so the development of new ways for signature authentication is crucial. In the present work a commercial ink was spiked with many trace elements in various concentrations. Inorganic and organometallic ink soluble compounds were used as spiking agents, whilst ink retained its initial properties. The spiked inks were used for paper writing and the documents were analyzed by a non destructive method, the energy dispersive X-ray fluorescence. The thin target model was proved right for quantitative analysis and a very good linear relationship of the intensity (X-ray signal) against concentration was estimated for all used elements. Intensity ratios between different elements in the same ink gave very stable results, independent on the writing alterations. The impact of time both to written document and prepared inks was also investigated.


Cesium Nitrate Signature Authentication Perchlorate Hexahydrate Bismuth Chloride Nickel Perchlorate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. D. Maind, S. A. Kumar, N. Chattopadhyay, Ch. Gandhi, M. Sudersanan, J. Forensic Sci., 159 (2006) 32.CrossRefGoogle Scholar
  2. 2.
    J. Zieba-Palus, M. Kunicki, J. Forensic Sci., 158 (2006) 164.CrossRefGoogle Scholar
  3. 3.
    S. Verma, K. N. Prasad, G. J. Misra, Forensic Sci. Intern., 13 (1979) 65.CrossRefGoogle Scholar
  4. 4.
    V. N. Aginsky, J. Forensic Sci., 38 (1993) 1131.Google Scholar
  5. 5.
    C. Roux, M. Novotny, I. Evans, C. Lennard, Forensic Sci. Intern., 101 (1999) 167.CrossRefGoogle Scholar
  6. 6.
    V. N. Aginsky, J. Chromatogr., A678 (1994) 125.Google Scholar
  7. 7.
    J. A. Tappolet, Forensic Sci. Intern., 22 (1983) 99.CrossRefGoogle Scholar
  8. 8.
    R. N. Totty, M. R. Ordidge, L. J. Onion, Forensic Sci. Intern., 28 (1985) 137.CrossRefGoogle Scholar
  9. 9.
    L. F. Colwell, B. L. Kargel, J. Assoc. Off. Anal. Chem., 60 (1977) 613.Google Scholar
  10. 10.
    A. Lofgren, J. Andrasko, J. Forensic Sci., 38 (1993) 1151.Google Scholar
  11. 11.
    I. S. Lurie, J. D. Wittwer, High Performance Liquid Chromatography in Forensic Chemistry, Chromatographic Science Series, Vol. 24, Marcel Dekker Inc., 1983, p. 399.Google Scholar
  12. 12.
    S. Fanali, M. Schudel, J. Forensic Sci., 36 (1991) 1192.Google Scholar
  13. 13.
    E. Rohde, A. C. Mcmanus, C. Vogt, W. R. Heineman, J. Forensic Sci., 42 (1997) 1004.Google Scholar
  14. 14.
    A. Zlotnick, F. P. Smith, Forensic Sci. Intern., 92 (1998) 269.CrossRefGoogle Scholar
  15. 15.
    C. Vogt, J. Vogt, A. Becker, E. Rohde, J. Chromatogr., A781 (1997) 391.CrossRefGoogle Scholar
  16. 16.
    T. Hardcastle, M. A. Hall, J. Forensic Sci. Soc., 18 (1978) 53.CrossRefGoogle Scholar
  17. 17.
    C. Sensi, A. Cantu, J. Forensic Sci., 27 (1982) 196.Google Scholar
  18. 18.
    R. Brunelle, M. J. Pro, J. Assoc. Off. Anal. Chem., 55 (1972) 823.Google Scholar
  19. 19.
    R. A. Merril, E. G. Bartick, J. Forensic Sci., 37 (1992) 528.Google Scholar
  20. 20.
    J. Wang, G. Luo, S. Sun, Z. Wang, Y. Wang, J. Forensic Sci., 46 (2001) 1093.Google Scholar
  21. 21.
    B. B. Trzcinska, J. Mol. Struct., 294 (1993) 259.CrossRefGoogle Scholar
  22. 22.
    T. Sinor, P. Jeffery, K. Everse, E. Menzel, J. Forensic Sci., 31 (1986) 825.Google Scholar
  23. 23.
    A. Zeichner, B. Glattstein, J. Forensic Sci., 37 (1992) 738.Google Scholar
  24. 24.
    C. Vogt, A. Becker, J. Vogt, J. Forensic Sci., 44 (1999) 819.Google Scholar
  25. 25.
    J. L. Ferrero, C. Roldan, D. Juanes, J. Caarballo, J. Pereira, M. Ardid, J. L. Llunch, R. Vives, Nucl. Instr. Meth., B213 (2004) 729.Google Scholar
  26. 26.
    W. Malzer, O. Hahn, B. Kanngiesser, X-ray Spectrom., 33 (2004) 229.CrossRefGoogle Scholar
  27. 27.
    G. Vittiglio, S. Bichlmeier, P. Klinger, J. Heckel, W. Fuzhong, L. Vincze, K. Janssens, P. Engström, A. Rindby, K. Dietrich, D. Jembrih-Simbürger, M. Schreiner, D. Denis, A. Lakdar, A. Lamotte, Nucl. Instr. Meth., B213 (2004) 693.Google Scholar
  28. 28.
    J. S. Schweitzer, J. I. Trombka, S. Floyd, C. Selavka, G. Zeosky, N. Gahn, T. Mcclanahan, T. Burbine, Nucl. Instr. Meth., B241 (2005) 816.Google Scholar
  29. 29.
    D. N. Papadopoulou, G. A. Zachariadis, A. N. Anthemidis, N. C. Tsirliganis, J. A. Stratis, Talanta, 68 (2006) 1692.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • V. S. Hatzistavros
    • 1
  • N. G. Kallithrakas-Kontos
    • 1
  1. 1.Technical University of Crete, Laboratory of Analytical and Environmental ChemistryUniversity CampusChaniaGreece

Personalised recommendations