Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 274, Issue 3, pp 609–620 | Cite as

Analysis of cesium extracting solvent using GCMS and HPLC

  • T. L. White
  • C. C. Herman
  • S. L. Crump
  • A. R. Marinik
  • D. P. Lambert
  • R. E. Eibling
Article

Abstract

A high-level waste (HLW) remediation process scheduled to begin in 2007 at the Savannah River Site is the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). The MCU will use a hydrocarbon solvent (diluent) containing a cesium extractant, a calix[4]arene compound, to extract radioactive cesium from caustic HLW. The resulting decontaminated HLW waste or raffinate will be processed into grout at the Saltstone Production Facility (SPF). The cesium containing CSSX stream will undergo washing with dilute nitric acid followed by stripping of the cesium nitrate into a very dilute nitric acid or the strip effluent stream and the CSSX solvent will be recycled. The Defense Waste Processing Facility (DWPF) will receive the strip effluent stream and immobilize the cesium into borosilicate glass. Excess CSSX solvent carryover from the MCU creates a potential flammability problem during DWPF processing. Bench-scale DWPF process testing was performed with simulated waste to determine the fate of the CSSX solvent components. A simple high performance liquid chromatography (HPLC) method was developed to identify the modifier (which is used to increase Cs extraction and extractant solubility) and extractant within the DWPF process. The diluent and triocytlamine (which is used to suppress impurity effect and ion-pair disassociation) were determined using gas chromatography mass spectroscopy (GCMS). To close the organic balance, two types of sample preparation methods were needed. One involved extracting aqueous samples with methylene chloride or hexane, and the second was capturing the off gas of the DWPF process using carbon tubes and rinsing the tubes with carbon disulfide for analysis. This paper addresses the development of the analytical methods and the bench-scale simulated waste study results.

Keywords

High Performance Liquid Chromatography Sludge High Performance Liquid Chromatography Savannah River Site Carbon Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Corradini, D. Campbell, M. Draye, C. Drummond III, P. Hayward, L. Hobbs, E. Lahoda, R. Rogers, B. Sternberg, E. Zebroski, Research Needs for High-Level Waste Stored in Tanks and Bins at US Department of Energy Sites, National Academy Press, Washington, D. C., 2001, p. 13.Google Scholar
  2. 2.
    H. Harmon, R. Leugemors, S. Schlahta, S. Fink, M. Thompson, D. Walker, Savannah River Site Salt Processing Project: FY 2002 Research and Development Program Plan, US DOE Document PNNL-1370, 2001.Google Scholar
  3. 3.
    P. V. Bonnesen, L. H. Delmau, B. A. Moyer, R. A. Leonard, Solvent Extr. Ion Exch., 18 (2000) 1079.CrossRefGoogle Scholar
  4. 4.
    R. A. Leonard, C. Conner, M. W. Liberatore, J. Sedlet, S. B. Aase, G. F. Vandegrift, L. H. Delmau, P. V. Bonnesen, B. A. Moyer, Separ. Sci. Technol., 36 (2001) 743.CrossRefGoogle Scholar
  5. 5.
    T. L. White, R. A. Peterson, W. R. Wilmarth, M. A. Norato, S. L. Crump, L. H. Delmau, Separ. Sci. Technol., 38 (2003) 2667.CrossRefGoogle Scholar
  6. 6.
    P. M. Eller, NIOSH Manual of Analytical Methods, 4th ed., U. S. Department of Health and Human Service, Centers for Disease Control, National Institute of Occupational Safety and Health, Cincinnati, Ohio, 2003.Google Scholar
  7. 7.
    P. V. Bonnesen, L. H. Delmau, B. A. Moyer, G. J. Lumetta, Solvent Extr. Ion Exch., 21 (2003) 171.CrossRefGoogle Scholar
  8. 8.
    B. A. Moyer, R. A. Sachleben, P. V. Bonnesen, D. J. Presley, US Patent 6,174,503, Jan. 16, 2001.Google Scholar
  9. 9.
    G. Lumetta, R. Rogers, A. Gopalan, Calixarenes for Separations, ACS Symposium Series 757, American Chemical Society: Washington D. C., 2000, p. 45.Google Scholar
  10. 10.
    C. R. Duchemin, N. L. Engle, P. V. Bonnesen, T. J. Haverlock, L. H. Delmau, B. A. Moyer, Solvent Extr. Ion Exch., 19 (2001) 1037.CrossRefGoogle Scholar
  11. 11.
    C. C. Herman, M. F. Williams, S. L. Crump, A. R. Marinik, T. L. White, D. R. Best, E. K. Hansen, DWPF Flowsheet Studies with Simulants to Determine Modular Caustic Side Solvent Extraction Unit Solvent Partitioning and Verify Actinide Removal Process Incorporation Strategy, US Doe Document WSRC-TR-2006-00063, 2006.Google Scholar
  12. 12.
    D. P. Lambert, M. F. Williams, S. L. Crump, R. E. Eibling, T. L. White, D. R. Best, DWPF Flowsheet Studies with Simulants to Determine MCU Solvent Build-Up in Continuous Runs, US DOE Document WSRC-TR-2006-00154, 2006.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • T. L. White
    • 1
  • C. C. Herman
    • 1
  • S. L. Crump
    • 1
  • A. R. Marinik
    • 1
  • D. P. Lambert
    • 1
  • R. E. Eibling
    • 1
  1. 1.Savannah River National LaboratoryWashington Savannah River CompanyAikenUSA

Personalised recommendations